Explaining deep learning-based activity schedule models using SHapley Additive exPlanations

IF 3.3 3区 工程技术 Q2 TRANSPORTATION
Anil Koushik , M. Manoj , N. Nezamuddin
{"title":"Explaining deep learning-based activity schedule models using SHapley Additive exPlanations","authors":"Anil Koushik ,&nbsp;M. Manoj ,&nbsp;N. Nezamuddin","doi":"10.1080/19427867.2024.2359304","DOIUrl":null,"url":null,"abstract":"<div><div>Artificial neural networks are often criticized for their black box nature in travel behavior literature. The lack of understanding of variable influence induces little confidence in model predictions, significantly affecting their practical utility. This study aims to address this issue by employing SHapley Additive exPlanations to understand the influence of different variables in a deep learning-based activity schedule model. The activity schedule is represented as a time series which enables the study of temporal variations in the influence of each variable at much finer resolutions compared to earlier approaches. The findings reveal that variables such as the day-of-week, month of the year, and social participation wield significant influence over the activity schedule, while household structure and urban class also exert noticeable impacts. This proposed methodology enhances our understanding of variable influences at different times of the day, instilling confidence in the deep learning model’s results, advancing its practical application.</div></div>","PeriodicalId":48974,"journal":{"name":"Transportation Letters-The International Journal of Transportation Research","volume":"17 3","pages":"Pages 442-457"},"PeriodicalIF":3.3000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Letters-The International Journal of Transportation Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1942786724000407","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial neural networks are often criticized for their black box nature in travel behavior literature. The lack of understanding of variable influence induces little confidence in model predictions, significantly affecting their practical utility. This study aims to address this issue by employing SHapley Additive exPlanations to understand the influence of different variables in a deep learning-based activity schedule model. The activity schedule is represented as a time series which enables the study of temporal variations in the influence of each variable at much finer resolutions compared to earlier approaches. The findings reveal that variables such as the day-of-week, month of the year, and social participation wield significant influence over the activity schedule, while household structure and urban class also exert noticeable impacts. This proposed methodology enhances our understanding of variable influences at different times of the day, instilling confidence in the deep learning model’s results, advancing its practical application.
使用 SHapley Additive exPlanations 解释基于深度学习的活动计划模型
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.40
自引率
14.30%
发文量
79
审稿时长
>12 weeks
期刊介绍: Transportation Letters: The International Journal of Transportation Research is a quarterly journal that publishes high-quality peer-reviewed and mini-review papers as well as technical notes and book reviews on the state-of-the-art in transportation research. The focus of Transportation Letters is on analytical and empirical findings, methodological papers, and theoretical and conceptual insights across all areas of research. Review resource papers that merge descriptions of the state-of-the-art with innovative and new methodological, theoretical, and conceptual insights spanning all areas of transportation research are invited and of particular interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信