In-depth simulation of rainfall–runoff relationships using machine learning methods

M. Fuladipanah, Alireza Shahhosseini, Namal Rathnayake, H. M. Azamathulla, Upaka S. Rathnayake, D. Meddage, K. Tota-Maharaj
{"title":"In-depth simulation of rainfall–runoff relationships using machine learning methods","authors":"M. Fuladipanah, Alireza Shahhosseini, Namal Rathnayake, H. M. Azamathulla, Upaka S. Rathnayake, D. Meddage, K. Tota-Maharaj","doi":"10.2166/wpt.2024.147","DOIUrl":null,"url":null,"abstract":"\n Measurement inaccuracies and the absence of precise parameters value in conceptual and analytical models pose challenges in simulating the rainfall–runoff modeling (RRM). Accurate prediction of water resources, especially in water scarcity conditions, plays a distinctive and pivotal role in decision-making within water resource management. The significance of machine learning models (MLMs) has become pronounced in addressing these issues. In this context, the forthcoming research endeavors to model the RRM utilizing four MLMs: Support Vector Machine, Gene Expression Programming (GEP), Multilayer Perceptron, and Multivariate Adaptive Regression Splines (MARS). The simulation will be conducted within the Malwathu Oya watershed, employing a dataset comprising 4,765 daily observations spanning from July 18, 2005, to September 30, 2018, gathered from rainfall stations, and Kappachichiya hydrometric station. Of all input combinations, the model incorporating the input parameters Qt−1, Qt−2, and R̄t was identified as the optimal configuration among the considered alternatives. The models' performance was assessed through root mean square error (RMSE), mean average error (MAE), coefficient of determination (R2), and developed discrepancy ratio (DDR). The GEP model emerged as the superior choice, with corresponding index values (RMSE, MAE, R2, DDRmax) of (43.028, 9.991, 0.909, 0.736) during the training process and (40.561, 10.565, 0.832, 1.038) during the testing process.","PeriodicalId":104096,"journal":{"name":"Water Practice & Technology","volume":"71 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Practice & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/wpt.2024.147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Measurement inaccuracies and the absence of precise parameters value in conceptual and analytical models pose challenges in simulating the rainfall–runoff modeling (RRM). Accurate prediction of water resources, especially in water scarcity conditions, plays a distinctive and pivotal role in decision-making within water resource management. The significance of machine learning models (MLMs) has become pronounced in addressing these issues. In this context, the forthcoming research endeavors to model the RRM utilizing four MLMs: Support Vector Machine, Gene Expression Programming (GEP), Multilayer Perceptron, and Multivariate Adaptive Regression Splines (MARS). The simulation will be conducted within the Malwathu Oya watershed, employing a dataset comprising 4,765 daily observations spanning from July 18, 2005, to September 30, 2018, gathered from rainfall stations, and Kappachichiya hydrometric station. Of all input combinations, the model incorporating the input parameters Qt−1, Qt−2, and R̄t was identified as the optimal configuration among the considered alternatives. The models' performance was assessed through root mean square error (RMSE), mean average error (MAE), coefficient of determination (R2), and developed discrepancy ratio (DDR). The GEP model emerged as the superior choice, with corresponding index values (RMSE, MAE, R2, DDRmax) of (43.028, 9.991, 0.909, 0.736) during the training process and (40.561, 10.565, 0.832, 1.038) during the testing process.
利用机器学习方法深入模拟降雨-径流关系
在概念模型和分析模型中,测量不准确和缺乏精确参数值给模拟降雨-径流模型(RRM)带来了挑战。水资源的精确预测,尤其是在水资源短缺的条件下,在水资源管理决策中发挥着独特而关键的作用。在解决这些问题时,机器学习模型(MLM)的重要性已变得非常明显。在此背景下,即将开展的研究试图利用四种机器学习模型(MLMs)对 RRM 进行建模:支持向量机、基因表达编程(GEP)、多层感知器和多变量自适应回归样条(MARS)。模拟将在 Malwathu Oya 流域内进行,采用的数据集包括从 2005 年 7 月 18 日到 2018 年 9 月 30 日的 4765 个日观测值,这些观测值来自雨量站和卡帕奇奇亚水文站。在所有输入组合中,包含输入参数 Qt-1、Qt-2 和 R̄t 的模型被认为是所考虑的备选方案中的最佳配置。模型的性能通过均方根误差 (RMSE)、平均平均误差 (MAE)、判定系数 (R2) 和开发差异比 (DDR) 进行评估。在训练过程中,GEP 模型的相应指标值(RMSE、MAE、R2、DDRmax)分别为(43.028、9.991、0.909、0.736);在测试过程中,GEP 模型的相应指标值(40.561、10.565、0.832、1.038)分别为(40.561、10.565、0.832、1.038)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信