Application of Fixed Point Theorems to Differential Equation in b-Multiplicative Metric Spaces

J. Jarvisvivin, A. P. Dharsini
{"title":"Application of Fixed Point Theorems to Differential Equation in b-Multiplicative Metric Spaces","authors":"J. Jarvisvivin, A. P. Dharsini","doi":"10.17485/ijst/v17i22.1272","DOIUrl":null,"url":null,"abstract":"Objectives: In this manuscript, some fixed point theorems have been provided in b-multiplicative metric spaces. Methods: We proved the unique fixed point theorems using the Banach contraction principle and generalized Lipschitz contractive mappings. Findings: We established the P Property and the T-Stability of Picard’s iteration in b-multiplicative metric spaces. We also provide an example to demonstrate the result. Novelty: Using our results, we obtained the existence and uniqueness of solutions for ordinary multiplicative differential equations with initial value problems. 2020 Mathematics Subject Classification: 47H10, 54H25. Keywords: Fixed Point, Generalized Lipschitz Contractive, Picard’s iteration, b-Multiplicative Metric Space (b − MMS), T -Stability, Differential equation","PeriodicalId":13296,"journal":{"name":"Indian journal of science and technology","volume":"115 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian journal of science and technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17485/ijst/v17i22.1272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: In this manuscript, some fixed point theorems have been provided in b-multiplicative metric spaces. Methods: We proved the unique fixed point theorems using the Banach contraction principle and generalized Lipschitz contractive mappings. Findings: We established the P Property and the T-Stability of Picard’s iteration in b-multiplicative metric spaces. We also provide an example to demonstrate the result. Novelty: Using our results, we obtained the existence and uniqueness of solutions for ordinary multiplicative differential equations with initial value problems. 2020 Mathematics Subject Classification: 47H10, 54H25. Keywords: Fixed Point, Generalized Lipschitz Contractive, Picard’s iteration, b-Multiplicative Metric Space (b − MMS), T -Stability, Differential equation
定点定理在 b 倍增度量空间微分方程中的应用
目的:本手稿提供了一些 b-乘法度量空间的定点定理。方法:我们利用巴拿赫收缩原理和广义利普齐兹收缩映射证明了唯一定点定理。研究结果我们建立了皮卡尔迭代在 b 倍增度量空间中的 P 特性和 T 稳定性。我们还提供了一个例子来证明这一结果。新颖性:利用我们的结果,我们得到了有初值问题的常乘法微分方程解的存在性和唯一性。2020 数学主题分类:47H10, 54H25.关键词: 定点定点、广义利普齐兹收缩、皮卡尔迭代、b-多元空间(b - MMS)、T-稳定性、微分方程
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信