{"title":"Reduction of nitrogen loss in runoff from sloping farmland by a ridged biochar permeable reactive barrier with vegetated filter strips","authors":"Yuhe Zhang, Jianshuang Gao, Qiang Li, Shunyao Zhuang","doi":"10.3389/fenvs.2024.1381781","DOIUrl":null,"url":null,"abstract":"Eutrophication due to nitrogen (N) loss from sloping farmland has a high risk in the Three Gorges Reservoir. Biochar and vegetated filter strips (VFS) are used to control nutrient runoff and increase soil water-holding capacity, soil nutrient retention, and crop yield. However, surface biochar application has limited ability to control N loss, especially from sloping farmland.In this study, different widths of ridged biochar permeable reactive barrier (RB-PRB) with VFS were employed to intercept N loss in runoff from sloping farmland. Adsorption characteristics of biochar for nitrate and ammonium N were evaluated using isothermal and kinetic adsorption models before field experiments. N index values for ammonium (NH4+), nitrate (NO3−), dissolved N (DTN), particulate N (PN), and total N (TN) lost through runoff were monitored from April 2019 to January 2020.NO3− and NH4+ sorption on biochar was predominantly physical adsorption with a maximum capacity of 4.51 and 4.12 mg g-1, respectively. During the research period, the dominant transportation pathway of N loss involved dissolved total N movement through subsurface flow, which accounted for 65.55% of the total loss. TN loss for CK was 1954 g·hm-2, while RB-PRB and VFS decreased N loss from sloping farmland by 36.7%. The interception efficiency of RB-PRB was highest at 0.3 m width. VFS successfully intercepted particulate N and reduced it by 32.75%. In terms of soil nutrients, the RB-PRB and VFS interventions led to a substantial 41.69% increase in the TN content of the soil at a 0.4 m width.The findings suggest that biochar has a favorable adsorption effect on NH4+ and NO3−, an appropriate width of RB-PRB with VFS could effectively reduce nitrogen loss from sloping farmland. Simultaneously, it enhances the water and fertilizer retention capacity of sloping cropland soil; however, the long-term implications necessitate further validation.","PeriodicalId":509564,"journal":{"name":"Frontiers in Environmental Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Environmental Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fenvs.2024.1381781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Eutrophication due to nitrogen (N) loss from sloping farmland has a high risk in the Three Gorges Reservoir. Biochar and vegetated filter strips (VFS) are used to control nutrient runoff and increase soil water-holding capacity, soil nutrient retention, and crop yield. However, surface biochar application has limited ability to control N loss, especially from sloping farmland.In this study, different widths of ridged biochar permeable reactive barrier (RB-PRB) with VFS were employed to intercept N loss in runoff from sloping farmland. Adsorption characteristics of biochar for nitrate and ammonium N were evaluated using isothermal and kinetic adsorption models before field experiments. N index values for ammonium (NH4+), nitrate (NO3−), dissolved N (DTN), particulate N (PN), and total N (TN) lost through runoff were monitored from April 2019 to January 2020.NO3− and NH4+ sorption on biochar was predominantly physical adsorption with a maximum capacity of 4.51 and 4.12 mg g-1, respectively. During the research period, the dominant transportation pathway of N loss involved dissolved total N movement through subsurface flow, which accounted for 65.55% of the total loss. TN loss for CK was 1954 g·hm-2, while RB-PRB and VFS decreased N loss from sloping farmland by 36.7%. The interception efficiency of RB-PRB was highest at 0.3 m width. VFS successfully intercepted particulate N and reduced it by 32.75%. In terms of soil nutrients, the RB-PRB and VFS interventions led to a substantial 41.69% increase in the TN content of the soil at a 0.4 m width.The findings suggest that biochar has a favorable adsorption effect on NH4+ and NO3−, an appropriate width of RB-PRB with VFS could effectively reduce nitrogen loss from sloping farmland. Simultaneously, it enhances the water and fertilizer retention capacity of sloping cropland soil; however, the long-term implications necessitate further validation.