An advanced classification method for urban land cover classification

Douraied Guizani, E. Buday-Bódi, János Tamás, A. Nagy
{"title":"An advanced classification method for urban land cover classification","authors":"Douraied Guizani, E. Buday-Bódi, János Tamás, A. Nagy","doi":"10.34101/actaagrar/1/13652","DOIUrl":null,"url":null,"abstract":"This manuscript presents a detailed comparative analysis of three advanced classification techniques that were used between 2018 and 2020 to classify land cover using Landsat8 imagery, namely Support Vector Machine (SVM), Maximum Likelihood Classification (MLSC), and Random Forests (RF). The study focuses on evaluating the accuracy of these methods by comparing the classified maps with a higher-resolution ground truth map, utilising 500 randomly selected points for assessment.\nThe obtained results show that, compared to MLSC and RT, the Support Vector Machine (SVM) approach performs better. The SVM model demonstrates enhanced precision in land cover classification, showcasing its effectiveness in discerning subtle differences in landscape features.\nFurthermore, using the precise classification results produced by the SVM method, this study examines the temporal variations in land cover between 2018 and 2020. The results provide insight into dynamic land cover changes and highlight the significance of applying reliable classification techniques for thorough temporal analysis with Landsat8 images.","PeriodicalId":7365,"journal":{"name":"Acta Agraria Debreceniensis","volume":"41 30","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Agraria Debreceniensis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34101/actaagrar/1/13652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This manuscript presents a detailed comparative analysis of three advanced classification techniques that were used between 2018 and 2020 to classify land cover using Landsat8 imagery, namely Support Vector Machine (SVM), Maximum Likelihood Classification (MLSC), and Random Forests (RF). The study focuses on evaluating the accuracy of these methods by comparing the classified maps with a higher-resolution ground truth map, utilising 500 randomly selected points for assessment. The obtained results show that, compared to MLSC and RT, the Support Vector Machine (SVM) approach performs better. The SVM model demonstrates enhanced precision in land cover classification, showcasing its effectiveness in discerning subtle differences in landscape features. Furthermore, using the precise classification results produced by the SVM method, this study examines the temporal variations in land cover between 2018 and 2020. The results provide insight into dynamic land cover changes and highlight the significance of applying reliable classification techniques for thorough temporal analysis with Landsat8 images.
一种先进的城市土地覆被分类方法
本手稿详细比较分析了 2018 年至 2020 年间使用 Landsat8 图像进行土地覆被分类的三种先进分类技术,即支持向量机(SVM)、最大似然分类(MLSC)和随机森林(RF)。研究的重点是通过将分类地图与分辨率更高的地面实况地图进行比较,评估这些方法的准确性,并利用随机选取的 500 个点进行评估。SVM 模型提高了土地覆被分类的精确度,展示了其在辨别景观特征细微差别方面的有效性。此外,本研究还利用 SVM 方法产生的精确分类结果,研究了 2018 年至 2020 年期间土地覆被的时间变化。研究结果深入揭示了土地覆被的动态变化,并强调了应用可靠的分类技术对 Landsat8 图像进行全面时间分析的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信