Incorporating inherited variability into the drainage effect analysis of piezocone tests in gold tailings

G. Dienstmann, Letícia Perini, André Luis Meier, Natália Ziesmann, Juliano Pasa de Campos
{"title":"Incorporating inherited variability into the drainage effect analysis of piezocone tests in gold tailings","authors":"G. Dienstmann, Letícia Perini, André Luis Meier, Natália Ziesmann, Juliano Pasa de Campos","doi":"10.1680/jgeen.23.00082","DOIUrl":null,"url":null,"abstract":"The piezocone test (CPTu) is a commonly used field investigation method for analyzing the geomechanical behavior of mine tailings. However, the effect of drainage conditions on CPTu measurements is a critical factor in assessing tailings properties, particularly as tailings are often characterized as silty materials with intermediate permeability. Previous studies of drainage conditions have been hindered by the high variability of tailings materials, leading to considerable dispersion in experimental results. To address this challenge, the present paper proposes a numerical approach to characterize and incorporate the inherent variability of tailings to identify probabilistic limits of drainage. This approach involves characterizing site statistics through piezocone tests and incorporating this variability into a set of Monte Carlo analyses using cavity expansion theory. The results indicate that the probabilistic analysis accurately represents the variability of the normalized resistance, although there is a greater discrepancy when considering pore pressure measurements. As a practical application, probabilistic values of cone resistance were used to establish profiles of fully drained and undrained tests. These corrected profiles can then be used in load capacity methods, providing rational limits of behavior.","PeriodicalId":509438,"journal":{"name":"Proceedings of the Institution of Civil Engineers - Geotechnical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Civil Engineers - Geotechnical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1680/jgeen.23.00082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The piezocone test (CPTu) is a commonly used field investigation method for analyzing the geomechanical behavior of mine tailings. However, the effect of drainage conditions on CPTu measurements is a critical factor in assessing tailings properties, particularly as tailings are often characterized as silty materials with intermediate permeability. Previous studies of drainage conditions have been hindered by the high variability of tailings materials, leading to considerable dispersion in experimental results. To address this challenge, the present paper proposes a numerical approach to characterize and incorporate the inherent variability of tailings to identify probabilistic limits of drainage. This approach involves characterizing site statistics through piezocone tests and incorporating this variability into a set of Monte Carlo analyses using cavity expansion theory. The results indicate that the probabilistic analysis accurately represents the variability of the normalized resistance, although there is a greater discrepancy when considering pore pressure measurements. As a practical application, probabilistic values of cone resistance were used to establish profiles of fully drained and undrained tests. These corrected profiles can then be used in load capacity methods, providing rational limits of behavior.
将遗传变异纳入金尾矿压陷试验的排水效应分析中
压陷试验(CPTu)是分析矿山尾矿地质力学行为的常用现场勘测方法。然而,排水条件对 CPTu 测量的影响是评估尾矿特性的关键因素,尤其是尾矿通常被描述为具有中等渗透性的淤泥材料。以往对排水条件的研究因尾矿材料的高变异性而受到阻碍,导致实验结果相当分散。为应对这一挑战,本文提出了一种数值方法,用于描述并结合尾矿固有的可变性,以确定排水的概率极限。这种方法包括通过压陷试验确定场地统计特征,并利用空腔扩展理论将这种变异性纳入一组蒙特卡罗分析中。结果表明,概率分析准确地反映了归一化阻力的可变性,尽管在考虑孔隙压力测量时存在较大差异。在实际应用中,锥体阻力的概率值被用来建立完全排水和不排水试验的剖面图。这些修正后的剖面图可用于承载力方法,提供合理的行为极限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信