{"title":"The d-elements of precoherent preidempotent quantales and their applications","authors":"Xianglong Ruan","doi":"10.1093/jigpal/jzae063","DOIUrl":null,"url":null,"abstract":"\n In this paper, we introduce the notion of d-elements on precoherent preidempotent quantale (PIQ), construct Zariski topology on $Max(Q_{d})$ and explore its various properties. Firstly, we give a sufficient condition of a topological space $Max(Q_{d})$ being Hausdorff. Secondly, we prove that if $ P=\\mathfrak{B}(P) $ and $ Q=\\mathfrak{B}(Q) $, then $P$ is isomorphic to $Q$ iff $ Max(P_{d}) $ is homeomorphic to $ Max(Q_{d}) $. Moreover, we prove that $ (P\\otimes Q)_{d} $ is isomorphic to $ P_{d} \\otimes Q_{d} $ iff $ P_{d} \\otimes Q_{d}=(P_{d} \\otimes Q_{d})_{d} $. Finally, we prove that the category $ \\textbf{dPFrm} $ is a reflective subcategory of $\\textbf{PIQuant}.$","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jigpal/jzae063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we introduce the notion of d-elements on precoherent preidempotent quantale (PIQ), construct Zariski topology on $Max(Q_{d})$ and explore its various properties. Firstly, we give a sufficient condition of a topological space $Max(Q_{d})$ being Hausdorff. Secondly, we prove that if $ P=\mathfrak{B}(P) $ and $ Q=\mathfrak{B}(Q) $, then $P$ is isomorphic to $Q$ iff $ Max(P_{d}) $ is homeomorphic to $ Max(Q_{d}) $. Moreover, we prove that $ (P\otimes Q)_{d} $ is isomorphic to $ P_{d} \otimes Q_{d} $ iff $ P_{d} \otimes Q_{d}=(P_{d} \otimes Q_{d})_{d} $. Finally, we prove that the category $ \textbf{dPFrm} $ is a reflective subcategory of $\textbf{PIQuant}.$