The (almost) integral Chow ring of ℳ̅3

Michele Pernice
{"title":"The (almost) integral Chow ring of ℳ̅3","authors":"Michele Pernice","doi":"10.1515/crelle-2024-0034","DOIUrl":null,"url":null,"abstract":"\n <jats:p>This paper is the fourth in a series of four papers aiming to describe the (almost integral) Chow ring of <jats:inline-formula>\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:msub>\n <m:mover accent=\"true\">\n <m:mi mathvariant=\"script\">M</m:mi>\n <m:mo>̄</m:mo>\n </m:mover>\n <m:mn>3</m:mn>\n </m:msub>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_crelle-2024-0034_ineq_0001.png\"/>\n <jats:tex-math>\\overline{\\mathcal{M}}_{3}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>, the moduli stack of stable curves of genus 3.\nIn this paper, we finally compute the Chow ring of <jats:inline-formula>\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:msub>\n <m:mover accent=\"true\">\n <m:mi mathvariant=\"script\">M</m:mi>\n <m:mo>̄</m:mo>\n </m:mover>\n <m:mn>3</m:mn>\n </m:msub>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_crelle-2024-0034_ineq_0001.png\"/>\n <jats:tex-math>\\overline{\\mathcal{M}}_{3}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> with <jats:inline-formula>\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mrow>\n <m:mi mathvariant=\"double-struck\">Z</m:mi>\n <m:mo>⁢</m:mo>\n <m:mrow>\n <m:mo stretchy=\"false\">[</m:mo>\n <m:mrow>\n <m:mn>1</m:mn>\n <m:mo>/</m:mo>\n <m:mn>6</m:mn>\n </m:mrow>\n <m:mo stretchy=\"false\">]</m:mo>\n </m:mrow>\n </m:mrow>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_crelle-2024-0034_ineq_0003.png\"/>\n <jats:tex-math>\\mathbb{Z}[1/6]</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>-coefficients.</jats:p>","PeriodicalId":508691,"journal":{"name":"Journal für die reine und angewandte Mathematik (Crelles Journal)","volume":"91 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal für die reine und angewandte Mathematik (Crelles Journal)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/crelle-2024-0034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is the fourth in a series of four papers aiming to describe the (almost integral) Chow ring of M ̄ 3 \overline{\mathcal{M}}_{3} , the moduli stack of stable curves of genus 3. In this paper, we finally compute the Chow ring of M ̄ 3 \overline{\mathcal{M}}_{3} with Z [ 1 / 6 ] \mathbb{Z}[1/6] -coefficients.
ℳ̅3的(几乎)积分周环
本文是一系列四篇论文中的第四篇,旨在描述 M ̄ 3 \overline\{mathcal{M}}_{3} 的(近乎积分)Chow 环。 在本文中,我们最终计算了 M ̄ 3 的周环 Z [ 1 / 6 ]。 \mathbb{Z}[1/6] -系数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信