Development of PLA/HA porous scaffolds with controlled pore sizes using the combined freeze drying and sucrose leaching technique for bone tissue engineering

IF 0.7 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
Sunisa Singhawannurat, Panuwat Lawtae, C. Rojviriya, Chalermluck Phoovasawat
{"title":"Development of PLA/HA porous scaffolds with controlled pore sizes using the combined freeze drying and sucrose leaching technique for bone tissue engineering","authors":"Sunisa Singhawannurat, Panuwat Lawtae, C. Rojviriya, Chalermluck Phoovasawat","doi":"10.55713/jmmm.v34i2.1928","DOIUrl":null,"url":null,"abstract":"The combination of freeze drying and sucrose leaching technique was employed to fabricate PLA/HA scaffolds with controlled pore size. The influence of the HA content and sucrose size on the scaffold properties was investigated. The fabricated scaffolds showed porous properties with a porosity of 44% to 58% and pore size of 461 μm to 688 μm. The results indicated that the scaffolds possessed favorable porous properties, illustrated by good interconnectivity, appropriate pore size, and suitable porosity. These characteristics were crucial for facilitating bone cell growth and promoting the formation of new tissue within the scaffold structure. The compressive modulus of the scaffolds was examined and found to be in the range of 3.35 MPa to 5.75 MPa. Furthermore, the degradation behavior of the scaffolds was studied for 28 days in a Phosphate Buffered Saline solution. The results showed that the degradation rate was varied in the range of 6% to 14%. The water uptake of the scaffolds exhibited a range between 180% and 200%. Enhancement in water uptake was observed with higher HA content and increased sucrose size. Consequently, the scaffolds developed in this study hold promise as optimal candidates for bone tissue engineering applications.","PeriodicalId":16459,"journal":{"name":"Journal of metals, materials and minerals","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of metals, materials and minerals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55713/jmmm.v34i2.1928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The combination of freeze drying and sucrose leaching technique was employed to fabricate PLA/HA scaffolds with controlled pore size. The influence of the HA content and sucrose size on the scaffold properties was investigated. The fabricated scaffolds showed porous properties with a porosity of 44% to 58% and pore size of 461 μm to 688 μm. The results indicated that the scaffolds possessed favorable porous properties, illustrated by good interconnectivity, appropriate pore size, and suitable porosity. These characteristics were crucial for facilitating bone cell growth and promoting the formation of new tissue within the scaffold structure. The compressive modulus of the scaffolds was examined and found to be in the range of 3.35 MPa to 5.75 MPa. Furthermore, the degradation behavior of the scaffolds was studied for 28 days in a Phosphate Buffered Saline solution. The results showed that the degradation rate was varied in the range of 6% to 14%. The water uptake of the scaffolds exhibited a range between 180% and 200%. Enhancement in water uptake was observed with higher HA content and increased sucrose size. Consequently, the scaffolds developed in this study hold promise as optimal candidates for bone tissue engineering applications.
利用冷冻干燥和蔗糖浸出联合技术开发孔径可控的聚乳酸/海藻糖多孔支架,用于骨组织工程
研究人员结合冷冻干燥和蔗糖浸出技术,制备了孔径可控的聚乳酸/HA 支架。研究了 HA 含量和蔗糖大小对支架性能的影响。制得的支架具有多孔性,孔隙率为 44% 至 58%,孔径为 461 μm 至 688 μm。结果表明,支架具有良好的多孔特性,如良好的互联性、适当的孔径和合适的孔隙率。这些特性对于促进骨细胞生长和支架结构内新组织的形成至关重要。研究发现,支架的压缩模量在 3.35 兆帕至 5.75 兆帕之间。此外,还研究了支架在磷酸盐缓冲盐溶液中 28 天的降解行为。结果表明,降解率在 6% 到 14% 之间变化。支架的吸水率在 180% 到 200% 之间。随着 HA 含量的提高和蔗糖量的增加,吸水率也随之提高。因此,本研究开发的支架有望成为骨组织工程应用的最佳候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of metals, materials and minerals
Journal of metals, materials and minerals MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
1.40
自引率
11.10%
发文量
0
期刊介绍: Journal of Metals, Materials and Minerals (JMMM) is a double-blind peer-reviewed international journal published 4 issues per year (starting from 2019), in March, June, September, and December, aims at disseminating advanced knowledge in the fields to academia, professionals and industrialists. JMMM publishes original research articles as well as review articles related to research and development in science, technology and engineering of metals, materials and minerals, including composite & hybrid materials, concrete and cement-based systems, ceramics, glass, refractory, semiconductors, polymeric & polymer-based materials, conventional & technical textiles, nanomaterials, thin films, biomaterials, and functional materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信