Development of machine learning models for estimation of daily evaporation and mean temperature: a case study in New Delhi, India

Jitendra Rajput, N. L. Kushwaha, Aman Srivastava, C. Pande, Triptimayee Suna, D. R. Sena, D. K. Singh, A. K. Mishra, P. K. Sahoo, A. Elbeltagi
{"title":"Development of machine learning models for estimation of daily evaporation and mean temperature: a case study in New Delhi, India","authors":"Jitendra Rajput, N. L. Kushwaha, Aman Srivastava, C. Pande, Triptimayee Suna, D. R. Sena, D. K. Singh, A. K. Mishra, P. K. Sahoo, A. Elbeltagi","doi":"10.2166/wpt.2024.144","DOIUrl":null,"url":null,"abstract":"\n \n Accurate prediction of pan evaporation and mean temperature is crucial for effective water resources management, influencing the hydrological cycle and impacting water availability. This study focused on New Delhi's semi-arid climate, data spanning 31 years (1990–2020) were used to predict these variables using advanced algorithms such as Bagging, Random Subspace (RSS), M5P, and REPTree. The models were rigorously evaluated using 10 performance metrics, including correlation coefficient, mean absolute error (MAE), and Nash–Sutcliffe Efficiency (NSE) model coefficient. The Bagging model emerged as the best model with performance indices values as r, MAE, RMSE, RAE, RRSE, MBE NSE, d, KGE, and MAPE as 0.86, 0.76, 1.43, 32.70, 49.44, 0.03, 0.85, 0.96, 0.90, and 22.0, respectively, during model testing phase for pan evaporation prediction. In predicting mean temperature, the Bagging model reported the best results with performance indices values as r, MAE, RMSE, RAE, RRSE, MBE NSE, d, KGE, and MAPE as 0.86, 0.76, 1.43, 32.70, 49.44, 0.03, 0.85, 0.96, 0.90 and 22.0, respectively, during the model testing phase. These findings offer valuable insights for enhancing relative humidity prediction models in diverse climatic conditions. The Bagging model's robust performance underscores its potential application in water resource management.","PeriodicalId":104096,"journal":{"name":"Water Practice & Technology","volume":"4 19","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Practice & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/wpt.2024.144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate prediction of pan evaporation and mean temperature is crucial for effective water resources management, influencing the hydrological cycle and impacting water availability. This study focused on New Delhi's semi-arid climate, data spanning 31 years (1990–2020) were used to predict these variables using advanced algorithms such as Bagging, Random Subspace (RSS), M5P, and REPTree. The models were rigorously evaluated using 10 performance metrics, including correlation coefficient, mean absolute error (MAE), and Nash–Sutcliffe Efficiency (NSE) model coefficient. The Bagging model emerged as the best model with performance indices values as r, MAE, RMSE, RAE, RRSE, MBE NSE, d, KGE, and MAPE as 0.86, 0.76, 1.43, 32.70, 49.44, 0.03, 0.85, 0.96, 0.90, and 22.0, respectively, during model testing phase for pan evaporation prediction. In predicting mean temperature, the Bagging model reported the best results with performance indices values as r, MAE, RMSE, RAE, RRSE, MBE NSE, d, KGE, and MAPE as 0.86, 0.76, 1.43, 32.70, 49.44, 0.03, 0.85, 0.96, 0.90 and 22.0, respectively, during the model testing phase. These findings offer valuable insights for enhancing relative humidity prediction models in diverse climatic conditions. The Bagging model's robust performance underscores its potential application in water resource management.
开发用于估算日蒸发量和平均气温的机器学习模型:印度新德里的案例研究
准确预测平原蒸发量和平均气温对有效管理水资源至关重要,会影响水文循环并影响水的可用性。本研究以新德里的半干旱气候为重点,采用 Bagging、Random Subspace (RSS)、M5P 和 REPTree 等先进算法对这些变量进行预测,数据跨度为 31 年(1990-2020 年)。利用相关系数、平均绝对误差(MAE)和纳什-苏特克利夫效率(NSE)模型系数等 10 个性能指标对模型进行了严格评估。在平原蒸发预测的模型测试阶段,袋装模型成为最佳模型,其性能指数值分别为 r、MAE、RMSE、RAE、RRSE、MBE NSE、d、KGE 和 MAPE,分别为 0.86、0.76、1.43、32.70、49.44、0.03、0.85、0.96、0.90 和 22.0。在预测平均气温方面,袋装模型的结果最佳,在模型测试阶段,其性能指数值 r、MAE、RMSE、RAE、RRSE、MBE NSE、d、KGE 和 MAPE 分别为 0.86、0.76、1.43、32.70、49.44、0.03、0.85、0.96、0.90 和 22.0。这些发现为改进不同气候条件下的相对湿度预测模型提供了宝贵的启示。袋装模型的稳健性能强调了其在水资源管理中的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信