Study of titanium alloy Ti–Al–Zr–Nb–V during heating under deformation and its phase transformation features

IF 0.7 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
A. Kenzhegulov, A.A. Mamaeva, A. Panichkin, A. Imbarova, B. Kshibekova, Rashida Aubakirova, Natasha Satkanova, Nazgul Toiynbaeva
{"title":"Study of titanium alloy Ti–Al–Zr–Nb–V during heating under deformation and its phase transformation features","authors":"A. Kenzhegulov, A.A. Mamaeva, A. Panichkin, A. Imbarova, B. Kshibekova, Rashida Aubakirova, Natasha Satkanova, Nazgul Toiynbaeva","doi":"10.55713/jmmm.v34i2.1908","DOIUrl":null,"url":null,"abstract":"An alloy based on Ti–Al–Zr–Nb–V was prepared and its deformation behavior at elevated temperatures was studied. The microstructure and phase of the alloys were characterized by optical microscopy, scanning electron microscopy, thermal analysis, and mechanical testing. The results showed that the Ti–Al–Zr–Nb–V alloy, when stretched, exhibits a superplasticity effect in the range of  975℃ to 1100℃, with an elongation of up to 400%. It was found that superplasticity develops in the temperature region of the α+β→β transition and is accompanied by a change in grain size and redistribution of alloying elements among phases.","PeriodicalId":16459,"journal":{"name":"Journal of metals, materials and minerals","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of metals, materials and minerals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55713/jmmm.v34i2.1908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

An alloy based on Ti–Al–Zr–Nb–V was prepared and its deformation behavior at elevated temperatures was studied. The microstructure and phase of the alloys were characterized by optical microscopy, scanning electron microscopy, thermal analysis, and mechanical testing. The results showed that the Ti–Al–Zr–Nb–V alloy, when stretched, exhibits a superplasticity effect in the range of  975℃ to 1100℃, with an elongation of up to 400%. It was found that superplasticity develops in the temperature region of the α+β→β transition and is accompanied by a change in grain size and redistribution of alloying elements among phases.
加热变形过程中的钛合金 Ti-Al-Zr-Nb-V 及其相变特征研究
制备了一种基于 Ti-Al-Zr-Nb-V 的合金,并研究了其在高温下的变形行为。通过光学显微镜、扫描电子显微镜、热分析和机械测试对合金的微观结构和相进行了表征。结果表明,Ti-Al-Zr-Nb-V 合金在拉伸时,在 975℃ 至 1100℃ 范围内表现出超塑性效应,伸长率高达 400%。研究发现,超塑性发生在 α+β→β 转变的温度区域,并伴随着晶粒大小的变化和合金元素在相间的重新分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of metals, materials and minerals
Journal of metals, materials and minerals MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
1.40
自引率
11.10%
发文量
0
期刊介绍: Journal of Metals, Materials and Minerals (JMMM) is a double-blind peer-reviewed international journal published 4 issues per year (starting from 2019), in March, June, September, and December, aims at disseminating advanced knowledge in the fields to academia, professionals and industrialists. JMMM publishes original research articles as well as review articles related to research and development in science, technology and engineering of metals, materials and minerals, including composite & hybrid materials, concrete and cement-based systems, ceramics, glass, refractory, semiconductors, polymeric & polymer-based materials, conventional & technical textiles, nanomaterials, thin films, biomaterials, and functional materials.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信