Boundary integrated neural networks and code for acoustic radiation and scattering

IF 3.4 Q1 ENGINEERING, MECHANICAL
Wenzhen Qu, Yan Gu, Shengdong Zhao, Fajie Wang, Ji Lin
{"title":"Boundary integrated neural networks and code for acoustic radiation and scattering","authors":"Wenzhen Qu,&nbsp;Yan Gu,&nbsp;Shengdong Zhao,&nbsp;Fajie Wang,&nbsp;Ji Lin","doi":"10.1002/msd2.12109","DOIUrl":null,"url":null,"abstract":"<p>This paper presents a novel approach called the boundary integrated neural networks (BINNs) for analyzing acoustic radiation and scattering. The method introduces fundamental solutions of the time-harmonic wave equation to encode the boundary integral equations (BIEs) within the neural networks, replacing the conventional use of the governing equation in physics-informed neural networks (PINNs). This approach offers several advantages. First, the input data for the neural networks in the BINNs only require the coordinates of “boundary” collocation points, making it highly suitable for analyzing acoustic fields in unbounded domains. Second, the loss function of the BINNs is not a composite form and has a fast convergence. Third, the BINNs achieve comparable precision to the PINNs using fewer collocation points and hidden layers/neurons. Finally, the semianalytic characteristic of the BIEs contributes to the higher precision of the BINNs. Numerical examples are presented to demonstrate the performance of the proposed method, and a MATLAB code implementation is provided as supplementary material.</p>","PeriodicalId":60486,"journal":{"name":"国际机械系统动力学学报(英文)","volume":"4 2","pages":"131-141"},"PeriodicalIF":3.4000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/msd2.12109","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"国际机械系统动力学学报(英文)","FirstCategoryId":"1087","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/msd2.12109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a novel approach called the boundary integrated neural networks (BINNs) for analyzing acoustic radiation and scattering. The method introduces fundamental solutions of the time-harmonic wave equation to encode the boundary integral equations (BIEs) within the neural networks, replacing the conventional use of the governing equation in physics-informed neural networks (PINNs). This approach offers several advantages. First, the input data for the neural networks in the BINNs only require the coordinates of “boundary” collocation points, making it highly suitable for analyzing acoustic fields in unbounded domains. Second, the loss function of the BINNs is not a composite form and has a fast convergence. Third, the BINNs achieve comparable precision to the PINNs using fewer collocation points and hidden layers/neurons. Finally, the semianalytic characteristic of the BIEs contributes to the higher precision of the BINNs. Numerical examples are presented to demonstrate the performance of the proposed method, and a MATLAB code implementation is provided as supplementary material.

Abstract Image

声辐射和散射的边界集成神经网络和代码
本文提出了一种用于分析声辐射和散射的新方法,即边界集成神经网络(BINNs)。该方法引入时谐波方程的基本解,在神经网络中编码边界积分方程(BIEs),取代了物理信息神经网络(PINNs)中传统的调控方程。这种方法有几个优点。首先,BINNs 神经网络的输入数据只需要 "边界 "定位点的坐标,因此非常适合分析无边界域中的声场。其次,BINNs 的损失函数不是复合形式,收敛速度快。第三,BINNs 使用较少的配准点和隐层/神经元就能达到与 PINNs 相当的精度。最后,BIEs 的半解析特性有助于提高 BINNs 的精度。本文列举了一些数值示例来证明所提方法的性能,并提供了 MATLAB 代码实现作为补充材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信