{"title":"An edge preserving median filter for images based on level-sets","authors":"Jean-Pierre Stander","doi":"10.52933/jdssv.v4i3.74","DOIUrl":null,"url":null,"abstract":"We propose an edge preserving median filter, called the level-set adaptive median filter, for noise removal in images. This filter uses connected sets of pixels with the same value, namely level-sets, as flexible regions which contour to edges in the image. The filter determines whether a set is noise or signal and smooths the noise. These set regions are flexible in terms of shape since they are created based on their values, and being data-driven therefore provide the mechanism for the filter to preserve edges in the image. We used metrics such as Pratt's Figure of Merit and Peak-Signal-to-Noise Ratio on the labelled faces in the wild data set. We concluded that the proposed level-set adaptive median filter does remove noise while preserving the edges in the image better than the traditional adaptive median filter.","PeriodicalId":93459,"journal":{"name":"Journal of data science, statistics, and visualisation","volume":"5 18","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of data science, statistics, and visualisation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52933/jdssv.v4i3.74","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We propose an edge preserving median filter, called the level-set adaptive median filter, for noise removal in images. This filter uses connected sets of pixels with the same value, namely level-sets, as flexible regions which contour to edges in the image. The filter determines whether a set is noise or signal and smooths the noise. These set regions are flexible in terms of shape since they are created based on their values, and being data-driven therefore provide the mechanism for the filter to preserve edges in the image. We used metrics such as Pratt's Figure of Merit and Peak-Signal-to-Noise Ratio on the labelled faces in the wild data set. We concluded that the proposed level-set adaptive median filter does remove noise while preserving the edges in the image better than the traditional adaptive median filter.