NRF2 Plays a Crucial Role in the Tolerogenic Effect of Ethyl Pyruvate on Dendritic Cells

Suzana Stanisavljević, Goran Stegnjaić, B. Jevtić, Mirjana Dimitrijević, Đ. Miljković, I. Lavrnja, Neda Nikolovski
{"title":"NRF2 Plays a Crucial Role in the Tolerogenic Effect of Ethyl Pyruvate on Dendritic Cells","authors":"Suzana Stanisavljević, Goran Stegnjaić, B. Jevtić, Mirjana Dimitrijević, Đ. Miljković, I. Lavrnja, Neda Nikolovski","doi":"10.3390/ijms25116195","DOIUrl":null,"url":null,"abstract":"Ethyl pyruvate (EP) is a redox-active compound that has been previously shown to be effective in restraining immune hyperactivity in animal models of various autoimmune and chronic inflammatory diseases. Importantly, EP has also been proven to have a potent tolerogenic effect on dendritic cells (DCs). Here, the influence of EP on the signaling pathways in DCs relevant for their tolerogenicity, including anti-inflammatory NRF2 and pro-inflammatory NF-κB, was explored. Specifically, the effects of EP on DCs obtained by GM-CSF-directed differentiation of murine bone marrow precursor cells and matured under the influence of lipopolysaccharide (LPS) were examined via immunocytochemistry and RT-PCR. EP counteracted LPS-imposed morphological changes and down-regulated the LPS-induced expression of pro-inflammatory mediators in DCs. While it reduced the activation of NF-κB, EP potentiated NRF2 and downstream antioxidative molecules, thus implying the regulation of NRF2 signaling pathways as the major reason for the tolerizing effects of EP on DCs.","PeriodicalId":509625,"journal":{"name":"International Journal of Molecular Sciences","volume":"2 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ijms25116195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ethyl pyruvate (EP) is a redox-active compound that has been previously shown to be effective in restraining immune hyperactivity in animal models of various autoimmune and chronic inflammatory diseases. Importantly, EP has also been proven to have a potent tolerogenic effect on dendritic cells (DCs). Here, the influence of EP on the signaling pathways in DCs relevant for their tolerogenicity, including anti-inflammatory NRF2 and pro-inflammatory NF-κB, was explored. Specifically, the effects of EP on DCs obtained by GM-CSF-directed differentiation of murine bone marrow precursor cells and matured under the influence of lipopolysaccharide (LPS) were examined via immunocytochemistry and RT-PCR. EP counteracted LPS-imposed morphological changes and down-regulated the LPS-induced expression of pro-inflammatory mediators in DCs. While it reduced the activation of NF-κB, EP potentiated NRF2 and downstream antioxidative molecules, thus implying the regulation of NRF2 signaling pathways as the major reason for the tolerizing effects of EP on DCs.
NRF2 在丙酮酸乙酯对树突状细胞的耐受效应中发挥关键作用
丙酮酸乙酯(EP)是一种具有氧化还原作用的化合物,以前曾被证明能有效抑制各种自身免疫性疾病和慢性炎症性疾病动物模型的免疫亢进。重要的是,EP 还被证明对树突状细胞(DCs)具有强效的耐受性。在此,我们探讨了 EP 对 DCs 中与其耐受性相关的信号通路(包括抗炎性 NRF2 和促炎性 NF-κB)的影响。具体来说,研究人员通过免疫细胞化学和 RT-PCR 检测了 EP 对通过 GM-CSF 引导分化小鼠骨髓前体细胞并在脂多糖(LPS)影响下成熟的 DCs 的影响。EP 抵消了 LPS 引起的形态学变化,并下调了 LPS 诱导的 DCs 中促炎介质的表达。在降低NF-κB活化的同时,EP还增强了NRF2和下游抗氧化分子的作用,这意味着NRF2信号通路的调节是EP对DCs产生耐受效应的主要原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信