Visual Interactive Parameter Selection for Temporal Blind Source Separation

C. Cappello, Nikolaus Piccolotto, C. Muehlmann, M. Bögl, Peter Filzmoser, Silvia Miksch, K. Nordhausen
{"title":"Visual Interactive Parameter Selection for Temporal Blind Source Separation","authors":"C. Cappello, Nikolaus Piccolotto, C. Muehlmann, M. Bögl, Peter Filzmoser, Silvia Miksch, K. Nordhausen","doi":"10.52933/jdssv.v4i3.82","DOIUrl":null,"url":null,"abstract":"Many fields of science and industry collect and analyze multivariate time-varying measurements, e.g., healthcare, geophysics, or finance. Such data is often high-dimensional, correlated, and noisy. Experts are interested in latent components of the dataset, but due to the aforementioned properties these are difficult to obtain. Temporal Blind Source Separation (TBSS) is a suitable and well-established framework for these data. However, the large choice of methods and their tuning parameters impedes the effective use of TBSS in practice. The goal of Visual Analytics (VA) is to create powerful analytic tools by combining the strengths of humans and computers. We designed, developed, and evaluated VA contributions in previous work to support TBSS-related analysis tasks. In this paper, we highlight the benefits and opportunities of VA concepts for statistic-oriented problems using a real-world TBSS application example with a dataset of climate and meteorological measurements in Italy.","PeriodicalId":93459,"journal":{"name":"Journal of data science, statistics, and visualisation","volume":"5 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of data science, statistics, and visualisation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52933/jdssv.v4i3.82","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Many fields of science and industry collect and analyze multivariate time-varying measurements, e.g., healthcare, geophysics, or finance. Such data is often high-dimensional, correlated, and noisy. Experts are interested in latent components of the dataset, but due to the aforementioned properties these are difficult to obtain. Temporal Blind Source Separation (TBSS) is a suitable and well-established framework for these data. However, the large choice of methods and their tuning parameters impedes the effective use of TBSS in practice. The goal of Visual Analytics (VA) is to create powerful analytic tools by combining the strengths of humans and computers. We designed, developed, and evaluated VA contributions in previous work to support TBSS-related analysis tasks. In this paper, we highlight the benefits and opportunities of VA concepts for statistic-oriented problems using a real-world TBSS application example with a dataset of climate and meteorological measurements in Italy.
时空盲源分离的视觉交互式参数选择
许多科学和工业领域都在收集和分析多变量时变测量数据,例如医疗保健、地球物理或金融领域。这些数据通常具有高维、相关和噪声等特点。专家们对数据集的潜在成分很感兴趣,但由于上述特性,很难获得这些成分。时空盲源分离(TBSS)是一种适用于这些数据的成熟框架。然而,大量的方法及其调整参数阻碍了 TBSS 在实践中的有效应用。可视分析(VA)的目标是结合人类和计算机的优势,创造出强大的分析工具。我们在以前的工作中设计、开发并评估了可视化分析的贡献,以支持与 TBSS 相关的分析任务。在本文中,我们以意大利的气候和气象测量数据集为例,通过一个真实的 TBSS 应用实例,强调了可视化分析概念在面向统计问题方面的优势和机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信