Nemanja I. Kovincic, H. Gattringer, Andreas Mueller, Mathias Brandstotter
{"title":"Physics Guided Machine Learning Approach to Safe Quasi-Static Impact Situations In Human-Robot Collaboration","authors":"Nemanja I. Kovincic, H. Gattringer, Andreas Mueller, Mathias Brandstotter","doi":"10.1115/1.4065671","DOIUrl":null,"url":null,"abstract":"\n Following the performance and force limitation method of the ISO/TS 15066 standard, safety of a human-robot collaboration task is assessed for critical situations assuming quasi-static impact. To this end, impact forces and pressures are experimentally measured and compared with limit values specified by ISO/TS 15066. Consequently, such a safety assessment must be repeated whenever something changes in the collaborative workspace or the task, which severely limits the flexibility of collaborative systems. To overcome this problem, in this paper a physics guided machine learning (ML) method for prediction of peak impact forces, within predefined modification dimensions of collaborative applications, is proposed. Along with a pose-dependent linearized model, an ensemble of boosted decision tree (BDT) in combination with a feed-forward neural network (NN) is trained with peak impact forces measured at a UR10e robot covering the range of interest. A generic pick and place task with two modification dimensions is considered as an example of the presented methodology. The method yields the maximal safe impact velocity in the collaborative workspace.","PeriodicalId":54858,"journal":{"name":"Journal of Computational and Nonlinear Dynamics","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Nonlinear Dynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4065671","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Following the performance and force limitation method of the ISO/TS 15066 standard, safety of a human-robot collaboration task is assessed for critical situations assuming quasi-static impact. To this end, impact forces and pressures are experimentally measured and compared with limit values specified by ISO/TS 15066. Consequently, such a safety assessment must be repeated whenever something changes in the collaborative workspace or the task, which severely limits the flexibility of collaborative systems. To overcome this problem, in this paper a physics guided machine learning (ML) method for prediction of peak impact forces, within predefined modification dimensions of collaborative applications, is proposed. Along with a pose-dependent linearized model, an ensemble of boosted decision tree (BDT) in combination with a feed-forward neural network (NN) is trained with peak impact forces measured at a UR10e robot covering the range of interest. A generic pick and place task with two modification dimensions is considered as an example of the presented methodology. The method yields the maximal safe impact velocity in the collaborative workspace.
期刊介绍:
The purpose of the Journal of Computational and Nonlinear Dynamics is to provide a medium for rapid dissemination of original research results in theoretical as well as applied computational and nonlinear dynamics. The journal serves as a forum for the exchange of new ideas and applications in computational, rigid and flexible multi-body system dynamics and all aspects (analytical, numerical, and experimental) of dynamics associated with nonlinear systems. The broad scope of the journal encompasses all computational and nonlinear problems occurring in aeronautical, biological, electrical, mechanical, physical, and structural systems.