Longitudinal risk prediction for pediatric glioma with temporal deep learning

Divyanshu Tak, Biniam A. Garomsa, A. Zapaishchykova, Zezhong Ye, Sri Vajapeyam, Maryam Mahootiha, Juan Carlos, Climent Pardo, Ceilidh Smith, Ariana M. Familiar, Kevin X. Liu, Sanjay Prabhu, P. Bandopadhayay, A. Nabavizadeh, Sabine Mueller, Hugo, Jwl Aerts, Daphne A Haas-Kogan, T. Poussaint, Benjamin H. Kann
{"title":"Longitudinal risk prediction for pediatric glioma with temporal deep learning","authors":"Divyanshu Tak, Biniam A. Garomsa, A. Zapaishchykova, Zezhong Ye, Sri Vajapeyam, Maryam Mahootiha, Juan Carlos, Climent Pardo, Ceilidh Smith, Ariana M. Familiar, Kevin X. Liu, Sanjay Prabhu, P. Bandopadhayay, A. Nabavizadeh, Sabine Mueller, Hugo, Jwl Aerts, Daphne A Haas-Kogan, T. Poussaint, Benjamin H. Kann","doi":"10.1101/2024.06.04.24308434","DOIUrl":null,"url":null,"abstract":"Pediatric glioma recurrence following surgery causes morbidity and mortality, and thus, children undergo frequent longitudinal magnetic resonance (MR) surveillance postoperatively to inform management. However, the pattern and severity of pediatric glioma recurrences are highly variable and challenging to predict with current clinical and genomic stratifications. Quantitative imaging analyses have shown promise for cancer risk prediction, and longitudinal analysis of glioma MR may improve the ability to predict future recurrence. Here, we propose a novel self-supervised, deep learning approach to longitudinal brain MR analysis, temporal learning, that models the spatiotemporal information from a patients prior, longitudinal brain MRs to predict future recurrence. We apply temporal learning to pediatric glioma surveillance imaging for 715 patients (3,994 scans) from four distinct clinical settings. We find that longitudinal imaging analysis with temporal learning improves recurrence prediction performance by up to 41% compared to training from scratch, with improvements in performance in both low- and high-grade glioma. We find that recurrence prediction accuracy increases incrementally with the number of historical scans available per patient. Temporal deep learning may enable point-of-care decision-support for pediatric glioma to personalize surveillance and postoperative therapy.","PeriodicalId":506788,"journal":{"name":"medRxiv","volume":"2 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.06.04.24308434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Pediatric glioma recurrence following surgery causes morbidity and mortality, and thus, children undergo frequent longitudinal magnetic resonance (MR) surveillance postoperatively to inform management. However, the pattern and severity of pediatric glioma recurrences are highly variable and challenging to predict with current clinical and genomic stratifications. Quantitative imaging analyses have shown promise for cancer risk prediction, and longitudinal analysis of glioma MR may improve the ability to predict future recurrence. Here, we propose a novel self-supervised, deep learning approach to longitudinal brain MR analysis, temporal learning, that models the spatiotemporal information from a patients prior, longitudinal brain MRs to predict future recurrence. We apply temporal learning to pediatric glioma surveillance imaging for 715 patients (3,994 scans) from four distinct clinical settings. We find that longitudinal imaging analysis with temporal learning improves recurrence prediction performance by up to 41% compared to training from scratch, with improvements in performance in both low- and high-grade glioma. We find that recurrence prediction accuracy increases incrementally with the number of historical scans available per patient. Temporal deep learning may enable point-of-care decision-support for pediatric glioma to personalize surveillance and postoperative therapy.
利用时态深度学习对小儿胶质瘤进行纵向风险预测
小儿胶质瘤术后复发会导致发病率和死亡率,因此,患儿术后要经常接受纵向磁共振(MR)监测,以便为管理提供依据。然而,小儿胶质瘤复发的模式和严重程度千变万化,目前的临床和基因组分层难以预测。定量成像分析已显示出预测癌症风险的前景,而胶质瘤磁共振的纵向分析可提高预测未来复发的能力。在这里,我们提出了一种新的自监督深度学习方法--时间学习,用于纵向脑磁共振分析,该方法可对患者之前的纵向脑磁共振的时空信息进行建模,从而预测未来的复发情况。我们将时间学习方法应用于儿科胶质瘤监测成像,对来自四种不同临床环境的 715 名患者(3994 次扫描)进行了分析。我们发现,与从头开始训练相比,利用时间学习进行纵向成像分析可将复发预测性能提高 41%,而且低级别和高级别胶质瘤的预测性能都有所提高。我们发现,复发预测的准确性会随着每位患者可用的历史扫描次数的增加而逐步提高。时态深度学习可为儿科胶质瘤提供护理点决策支持,实现个性化监测和术后治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信