Time in range prediction using the experimental mobile application in type 1 diabetes

IF 0.7 Q4 ENDOCRINOLOGY & METABOLISM
Diabetes Mellitus Pub Date : 2024-06-06 DOI:10.14341/dm13111
A. Rusanov, T. Rodionova
{"title":"Time in range prediction using the experimental mobile application in type 1 diabetes","authors":"A. Rusanov, T. Rodionova","doi":"10.14341/dm13111","DOIUrl":null,"url":null,"abstract":"BACKGROUND: Time in range (TIR) is a promising indicator of glycemic control used for evaluation of continuous glucose monitoring (CGM) for patients with diabetes mellitus (DM). The current problem is the assessment and prediction of TIR for patients who use self-monitoring of blood glucose (SМBG) corresponding low CGM availability for the majority of diabetic patients.AIM: To develop a predictive model of TIR for patients with T1DM based on data of the experimental mobile application.MATERIALS AND METHODS: An analysis of 1253 professional CGM profiles of patients with T1DM was performed. On the base of included records, TIR(CGM) was calculated and training models of 7-point SMBG profiles were generated. SMBG profiles’re loaded into the developed experimental mobile application that calculated standard glycemic control parameters. The dataset was divided into main and test samples (80 and 20%). For the main sample, the following methods’re used to develop predictive models: simple linear regression (SLR), multiple linear regression (MLR), artificial neural network (ANN). The effectiveness of the developed models was assessed on the test sample with the calculation of the mean absolute error (MAE), the root mean square error (RMSE).RESULTS: The 568 CGM profiles’re included in the study. TIR in the main group (n=454) — 45 [33; 65]%, in the test group (n=114) — 43 [33; 58]%. The most significant predictors of the regression models were the derived TIR (dTIR), p<0,001; derived time below range level 1 (dTBR1), p<0,001; standard deviation of blood glucose (SD), p=0,007. Determination coefficient for SLR (predictor: dTIR) — 0,844; for MLR (predictors: dTIR, dTBR1, SD) — 0,907. ANN multilayer perceptron models with two and one hidden layers’re developed, with the RMSE on the validation set 4,617 and 6,639%, respectively. The results of the forecast efficiency on the test sample were: dTIR: MAE — 6,82%, RMSE — 8,60%; SLR: MAE — 5,66%, RMSE — 7,34%; MLR: MAE — 4,18%, RMSE — 5,28%; ANN (2 layers): MAE — 4,14%, RMSE — 5,19%; ANN (1 layer): MAE — 4,44%, RMSE — 5,52%.CONCLUSION: ANN with two hidden layers and MLR demonstrated the best ability for TIR prediction. Further studies are required for clinical validation of developed prognostic models.","PeriodicalId":11327,"journal":{"name":"Diabetes Mellitus","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes Mellitus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14341/dm13111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

BACKGROUND: Time in range (TIR) is a promising indicator of glycemic control used for evaluation of continuous glucose monitoring (CGM) for patients with diabetes mellitus (DM). The current problem is the assessment and prediction of TIR for patients who use self-monitoring of blood glucose (SМBG) corresponding low CGM availability for the majority of diabetic patients.AIM: To develop a predictive model of TIR for patients with T1DM based on data of the experimental mobile application.MATERIALS AND METHODS: An analysis of 1253 professional CGM profiles of patients with T1DM was performed. On the base of included records, TIR(CGM) was calculated and training models of 7-point SMBG profiles were generated. SMBG profiles’re loaded into the developed experimental mobile application that calculated standard glycemic control parameters. The dataset was divided into main and test samples (80 and 20%). For the main sample, the following methods’re used to develop predictive models: simple linear regression (SLR), multiple linear regression (MLR), artificial neural network (ANN). The effectiveness of the developed models was assessed on the test sample with the calculation of the mean absolute error (MAE), the root mean square error (RMSE).RESULTS: The 568 CGM profiles’re included in the study. TIR in the main group (n=454) — 45 [33; 65]%, in the test group (n=114) — 43 [33; 58]%. The most significant predictors of the regression models were the derived TIR (dTIR), p<0,001; derived time below range level 1 (dTBR1), p<0,001; standard deviation of blood glucose (SD), p=0,007. Determination coefficient for SLR (predictor: dTIR) — 0,844; for MLR (predictors: dTIR, dTBR1, SD) — 0,907. ANN multilayer perceptron models with two and one hidden layers’re developed, with the RMSE on the validation set 4,617 and 6,639%, respectively. The results of the forecast efficiency on the test sample were: dTIR: MAE — 6,82%, RMSE — 8,60%; SLR: MAE — 5,66%, RMSE — 7,34%; MLR: MAE — 4,18%, RMSE — 5,28%; ANN (2 layers): MAE — 4,14%, RMSE — 5,19%; ANN (1 layer): MAE — 4,44%, RMSE — 5,52%.CONCLUSION: ANN with two hidden layers and MLR demonstrated the best ability for TIR prediction. Further studies are required for clinical validation of developed prognostic models.
使用实验性移动应用程序预测 1 型糖尿病患者的活动时间
背景:血糖在监测范围内的时间(TIR)是一个很有前景的血糖控制指标,用于评估糖尿病(DM)患者的连续血糖监测(CGM)。目前的问题是如何评估和预测使用自我血糖监测(SМBG)的患者的 TIR,而大多数糖尿病患者的 CGM 可用性较低。材料与方法:对 1253 名 T1DM 患者的专业 CGM 资料进行了分析。根据纳入的记录计算 TIR(CGM),并生成 7 点 SMBG 资料的训练模型。SMBG 资料被加载到开发的实验性移动应用程序中,该应用程序可计算标准血糖控制参数。数据集分为主样本和测试样本(80% 和 20%)。对于主样本,使用以下方法开发预测模型:简单线性回归(SLR)、多元线性回归(MLR)和人工神经网络(ANN)。通过计算平均绝对误差 (MAE) 和均方根误差 (RMSE),在测试样本上评估了所开发模型的有效性。主样本组(454 人)的 TIR 为 45 [33; 65]%,测试样本组(114 人)的 TIR 为 43 [33; 58]%。回归模型中最重要的预测因子是得出的 TIR (dTIR),p<0,001;得出的低于范围水平 1 的时间 (dTBR1),p<0,001;血糖标准偏差 (SD),p=0,007。SLR(预测因子:dTIR)的确定系数为 0,844;MLR(预测因子:dTIR、dTBR1、SD)的确定系数为 0,907。开发了具有两个和一个隐藏层的 ANN 多层感知器模型,在验证集上的均方根误差分别为 4 617% 和 6 639%。测试样本的预测效率结果为:dTIR:MAE - 6.82%,RMSE - 8.60%;SLR:MAE - 5.66%,RMSE - 7.34%;MLR:MAE - 4.18%,RMSE - 5.28%;ANN(2 层):MAE - 4.14%,RMSE - 5.19%;ANN(1 层):结论:具有两层隐藏层和 MLR 的方差网络在预测 TIR 方面表现出最佳能力。需要进一步研究对所开发的预后模型进行临床验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Diabetes Mellitus
Diabetes Mellitus ENDOCRINOLOGY & METABOLISM-
CiteScore
1.90
自引率
40.00%
发文量
61
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信