Jérôme Garnier-Brun, Michael Benzaquen, Jean-Philippe Bouchaud
{"title":"Unlearnable Games and “Satisficing” Decisions: A Simple Model for a Complex World","authors":"Jérôme Garnier-Brun, Michael Benzaquen, Jean-Philippe Bouchaud","doi":"10.1103/physrevx.14.021039","DOIUrl":null,"url":null,"abstract":"As a schematic model of the complexity economic agents are confronted with, we introduce the “Sherrington-Kirkpatrick game,” a discrete time binary choice model inspired from mean-field spin glasses. We show that, even in a completely static environment, agents are unable to learn collectively optimal strategies. This is either because the learning process gets trapped in a suboptimal fixed point or because learning never converges and leads to a never-ending evolution of agent intentions. Contrarily to the hope that learning might save the standard “rational expectation” framework in economics, we argue that complex situations are generically <i>unlearnable</i> and agents must do with <i>satisficing</i> solutions, as argued long ago by Simon [<span>Q. J. Econ.</span> <b>69</b>, 99 (1955)]. Only a centralized, omniscient agent endowed with enormous computing power could qualify to determine the optimal strategy of all agents. Using a mix of analytical arguments and numerical simulations, we find that (i) long memory of past rewards is beneficial to learning, whereas overreaction to recent past is detrimental and leads to cycles or chaos; (ii) increased competition (nonreciprocity) destabilizes fixed points and leads first to chaos and, in the high competition limit, to quasicycles; (iii) some amount of randomness in the learning process, perhaps paradoxically, allows the system to reach better collective decisions; (iv) nonstationary, “aging” behavior spontaneously emerges in a large swath of parameter space of our complex but static world. On the positive side, we find that the learning process allows cooperative systems to coordinate around satisficing solutions with rather high (but markedly suboptimal) average reward. However, hypersensitivity to the game parameters makes it impossible to predict <i>ex ante</i> who will be better or worse off in our stylized economy. The statistical description of the space of satisficing solutions is an open problem.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":null,"pages":null},"PeriodicalIF":11.6000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.14.021039","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
As a schematic model of the complexity economic agents are confronted with, we introduce the “Sherrington-Kirkpatrick game,” a discrete time binary choice model inspired from mean-field spin glasses. We show that, even in a completely static environment, agents are unable to learn collectively optimal strategies. This is either because the learning process gets trapped in a suboptimal fixed point or because learning never converges and leads to a never-ending evolution of agent intentions. Contrarily to the hope that learning might save the standard “rational expectation” framework in economics, we argue that complex situations are generically unlearnable and agents must do with satisficing solutions, as argued long ago by Simon [Q. J. Econ.69, 99 (1955)]. Only a centralized, omniscient agent endowed with enormous computing power could qualify to determine the optimal strategy of all agents. Using a mix of analytical arguments and numerical simulations, we find that (i) long memory of past rewards is beneficial to learning, whereas overreaction to recent past is detrimental and leads to cycles or chaos; (ii) increased competition (nonreciprocity) destabilizes fixed points and leads first to chaos and, in the high competition limit, to quasicycles; (iii) some amount of randomness in the learning process, perhaps paradoxically, allows the system to reach better collective decisions; (iv) nonstationary, “aging” behavior spontaneously emerges in a large swath of parameter space of our complex but static world. On the positive side, we find that the learning process allows cooperative systems to coordinate around satisficing solutions with rather high (but markedly suboptimal) average reward. However, hypersensitivity to the game parameters makes it impossible to predict ex ante who will be better or worse off in our stylized economy. The statistical description of the space of satisficing solutions is an open problem.
期刊介绍:
Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.