{"title":"Effectiveness of Drive-By Monitoring in Short-Span Bridges: A Real-Scale Experimental Evaluation","authors":"Kyriaki Gkoktsi, Flavio Bono, Daniel Tirelli","doi":"10.1155/2024/3509941","DOIUrl":null,"url":null,"abstract":"<div>\n <p>This paper experimentally assesses the efficacy of the indirect Structural Health Monitoring (iSHM) framework on a full-scale short-span bridge of nine meters long, using an instrumented vehicle with non-negligible mass with respect to the mass of the bridge. Emphasis is given to the dynamic identification of the two mechanical systems through Experimental Modal Analysis (EMA) on both the vehicle and the bridge. The EMA vehicle testing is among the main contributions of this paper, as such data become available in experimental iSHM implementations for the first time in the literature. Thus, new insights are brought on the vehicle’s dual role as a roving sensing unit and a vibrating mechanical system. A wireless sensor network is adopted that supports a dual monitoring system, i.e., an indirect system with accelerometers on the vehicle and a conventional system with fixed sensors on the bridge. Under a stationary vehicle’s position on the bridge, it is shown that a strong dynamic coupling occurs between the two systems due to their high mass ratio and the vehicle’s function as a Spring Mass Damper (SMD). In vehicle’s moving state, it is demonstrated that transfer of energy occurs between the vehicle and the bridge, which both oscillate under multiple modes of vibration that change over time. It is identified that four main parameters influence the quality of the extracted bridge natural frequencies from the vehicle-acquired data, i.e., (i) the filtering properties of the vehicle, (ii) the effective signals length in the presence of road discontinuities, (iii) the speed trade-offs, and (iv) the level of vehicle-induced bridge excitation and its transmissibility level. The careful consideration of those parameters determines the effectiveness of iSHM implementations in short-span bridges.</p>\n </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/3509941","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control & Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/3509941","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper experimentally assesses the efficacy of the indirect Structural Health Monitoring (iSHM) framework on a full-scale short-span bridge of nine meters long, using an instrumented vehicle with non-negligible mass with respect to the mass of the bridge. Emphasis is given to the dynamic identification of the two mechanical systems through Experimental Modal Analysis (EMA) on both the vehicle and the bridge. The EMA vehicle testing is among the main contributions of this paper, as such data become available in experimental iSHM implementations for the first time in the literature. Thus, new insights are brought on the vehicle’s dual role as a roving sensing unit and a vibrating mechanical system. A wireless sensor network is adopted that supports a dual monitoring system, i.e., an indirect system with accelerometers on the vehicle and a conventional system with fixed sensors on the bridge. Under a stationary vehicle’s position on the bridge, it is shown that a strong dynamic coupling occurs between the two systems due to their high mass ratio and the vehicle’s function as a Spring Mass Damper (SMD). In vehicle’s moving state, it is demonstrated that transfer of energy occurs between the vehicle and the bridge, which both oscillate under multiple modes of vibration that change over time. It is identified that four main parameters influence the quality of the extracted bridge natural frequencies from the vehicle-acquired data, i.e., (i) the filtering properties of the vehicle, (ii) the effective signals length in the presence of road discontinuities, (iii) the speed trade-offs, and (iv) the level of vehicle-induced bridge excitation and its transmissibility level. The careful consideration of those parameters determines the effectiveness of iSHM implementations in short-span bridges.
期刊介绍:
The Journal Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. The journal focuses on aerospace, civil, infrastructure and mechanical engineering applications.
Original contributions based on analytical, computational and experimental methods are solicited in three main areas: monitoring, control, and smart materials and structures, covering subjects such as system identification, health monitoring, health diagnostics, multi-functional materials, signal processing, sensor technology, passive, active and semi active control schemes and implementations, shape memory alloys, piezoelectrics and mechatronics.
Also of interest are actuator design, dynamic systems, dynamic stability, artificial intelligence tools, data acquisition, wireless communications, measurements, MEMS/NEMS sensors for local damage detection, optical fibre sensors for health monitoring, remote control of monitoring systems, sensor-logger combinations for mobile applications, corrosion sensors, scour indicators and experimental techniques.