BitFT: An Understandable, Performant and Resource-Efficient Blockchain Consensus

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Rui Hao;Xiaohai Dai;Weiqi Dai
{"title":"BitFT: An Understandable, Performant and Resource-Efficient Blockchain Consensus","authors":"Rui Hao;Xiaohai Dai;Weiqi Dai","doi":"10.1109/TSUSC.2023.3341440","DOIUrl":null,"url":null,"abstract":"Blockchain technology has gained prominence for its potential to address security and privacy challenges in Internet-of-Things (IoT) services and Cyber-Physical Systems (CPS) due to its decentralized, traceable, and immutable nature. However, the considerable energy consumption associated with blockchain, exemplified by Bitcoin, has raised sustainability concerns. This paper introduces BitFT, a consensus protocol that combines the strengths of both lottery-based and voting-based mechanisms to offer a sustainable, comprehensible, and high-performance solution. BitFT dissects the block lifecycle into three phases: dissemination, and commitment phases, which correspond to the Bitcoin framework. It leverages a multiple-round sortition algorithm, a Reliable Broadcast (Rbc) protocol, and a Quorum Certificate (QC) mechanism to facilitate efficient protocol operation. The sortition algorithm functions like a lottery algorithm, while the \n<small>Rbc</small>\n protocol and \n<inline-formula><tex-math>$QC$</tex-math></inline-formula>\n mechanism are implemented based on votes. In order to maximize network utilization and enhance system throughput, we further introduce a layered architecture to BitFT, which allows for concurrent commitment of multiple blocks at the same height. We perform a comprehensive analysis to verify the correctness of BitFT and conduct various experiments to demonstrate its high performance.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10354339/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Blockchain technology has gained prominence for its potential to address security and privacy challenges in Internet-of-Things (IoT) services and Cyber-Physical Systems (CPS) due to its decentralized, traceable, and immutable nature. However, the considerable energy consumption associated with blockchain, exemplified by Bitcoin, has raised sustainability concerns. This paper introduces BitFT, a consensus protocol that combines the strengths of both lottery-based and voting-based mechanisms to offer a sustainable, comprehensible, and high-performance solution. BitFT dissects the block lifecycle into three phases: dissemination, and commitment phases, which correspond to the Bitcoin framework. It leverages a multiple-round sortition algorithm, a Reliable Broadcast (Rbc) protocol, and a Quorum Certificate (QC) mechanism to facilitate efficient protocol operation. The sortition algorithm functions like a lottery algorithm, while the Rbc protocol and $QC$ mechanism are implemented based on votes. In order to maximize network utilization and enhance system throughput, we further introduce a layered architecture to BitFT, which allows for concurrent commitment of multiple blocks at the same height. We perform a comprehensive analysis to verify the correctness of BitFT and conduct various experiments to demonstrate its high performance.
BitFT:可理解、高性能、高资源效率的区块链共识
区块链技术因其去中心化、可追溯和不可改变的特性,在解决物联网(IoT)服务和网络物理系统(CPS)的安全和隐私挑战方面具有巨大潜力,因而备受瞩目。然而,与区块链相关的大量能源消耗(以比特币为例)引起了人们对可持续发展的关注。本文介绍的 BitFT 是一种共识协议,它结合了抽签机制和投票机制的优点,提供了一种可持续、可理解和高性能的解决方案。BitFT 将区块生命周期划分为三个阶段:传播阶段和承诺阶段,与比特币框架相对应。它利用多轮排序算法、可靠广播(Rbc)协议和法定人数证书(QC)机制来促进协议的高效运行。排序算法的功能类似于抽签算法,而 Rbc 协议和 QC$ 机制则基于投票来实现。为了最大限度地提高网络利用率和系统吞吐量,我们进一步为 BitFT 引入了分层架构,允许在同一高度同时承诺多个区块。我们进行了全面的分析来验证 BitFT 的正确性,并通过各种实验来证明它的高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Sustainable Computing
IEEE Transactions on Sustainable Computing Mathematics-Control and Optimization
CiteScore
7.70
自引率
2.60%
发文量
54
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信