Simulating Thin Shells by Bicubic Hermite Elements

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Xingyu Ni , Xuwen Chen , Cheng yu , Bin Wang , Baoquan Chen
{"title":"Simulating Thin Shells by Bicubic Hermite Elements","authors":"Xingyu Ni ,&nbsp;Xuwen Chen ,&nbsp;Cheng yu ,&nbsp;Bin Wang ,&nbsp;Baoquan Chen","doi":"10.1016/j.cad.2024.103734","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we present the bicubic Hermite element method (BHEM), a new computational framework devised for the elastodynamic simulation of thin-shell structures. The BHEM is constructed based on quadrilateral Hermite patches, which serve as a unified representation for shell geometry, simulation, collision avoidance, as well as rendering. Compared with the commonly utilized linear FEM, the BHEM offers higher-order solution spaces, enabling the capture of more intricate and smoother geometries while employing significantly fewer finite elements. In comparison to other high-order methods, the BHEM achieves conforming <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> continuity for Kirchhoff–Love (KL) shells with minimal complexity. Furthermore, by leveraging the subdivision and convex hull properties of Hermite patches, we develop an efficient algorithm for ray-patch intersections, facilitating collision handling in simulations and ray tracing in rendering. This eliminates the need for laborious remodeling of the pre-existing surface as the conventional approaches do. We substantiate our claims with comprehensive experiments, which demonstrate the high accuracy and versatility of the proposed method.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010448524000617","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we present the bicubic Hermite element method (BHEM), a new computational framework devised for the elastodynamic simulation of thin-shell structures. The BHEM is constructed based on quadrilateral Hermite patches, which serve as a unified representation for shell geometry, simulation, collision avoidance, as well as rendering. Compared with the commonly utilized linear FEM, the BHEM offers higher-order solution spaces, enabling the capture of more intricate and smoother geometries while employing significantly fewer finite elements. In comparison to other high-order methods, the BHEM achieves conforming C1 continuity for Kirchhoff–Love (KL) shells with minimal complexity. Furthermore, by leveraging the subdivision and convex hull properties of Hermite patches, we develop an efficient algorithm for ray-patch intersections, facilitating collision handling in simulations and ray tracing in rendering. This eliminates the need for laborious remodeling of the pre-existing surface as the conventional approaches do. We substantiate our claims with comprehensive experiments, which demonstrate the high accuracy and versatility of the proposed method.

Abstract Image

用双三次赫米特元素模拟薄壳
在本研究中,我们介绍了双立方赫米特元素法(BHEM),这是一种用于薄壳结构弹性动力学模拟的新计算框架。BHEM 基于四边形 Hermite 补丁构建,可作为壳体几何、模拟、避免碰撞以及渲染的统一表示。与常用的线性有限元法相比,BHEM 提供了更高阶的求解空间,可以捕捉到更复杂、更平滑的几何形状,同时大大减少了有限元的使用。与其他高阶方法相比,BHEM 以最小的复杂度实现了基尔霍夫-洛夫(KL)壳的符合 C1 连续性。此外,通过利用 Hermite 补丁的细分和凸壳特性,我们开发出了一种高效的射线-补丁交叉算法,从而方便了模拟中的碰撞处理和渲染中的射线追踪。这样就不需要像传统方法那样费力地重塑原有表面。我们通过全面的实验证实了我们的说法,证明了所提出方法的高准确性和多功能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信