Data-driven Design of High Pressure Hydride Superconductors using DFT and Deep Learning.

Daniel Wines, Kamal Choudhary
{"title":"Data-driven Design of High Pressure Hydride Superconductors using DFT and Deep Learning.","authors":"Daniel Wines, Kamal Choudhary","doi":"10.1088/2752-5724/ad4a94","DOIUrl":null,"url":null,"abstract":"<p><p>The observation of superconductivity in hydride-based materials under ultrahigh pressures (for example, H<sub>3</sub>S and LaH<sub>10</sub>) has fueled the interest in a more data-driven approach to discovering new high-pressure hydride superconductors. In this work, we performed density functional theory (DFT) calculations to predict the critical temperature (<i>T</i><sub><i>c</i></sub>) of over 900 hydride materials under a pressure range of (0 to 500) GPa, where we found 122 dynamically stable structures with a <i>T</i><sub><i>c</i></sub> above MgB<sub>2</sub> (39 K). To accelerate screening, we trained a graph neural network (GNN) model to predict <i>T</i><sub><i>c</i></sub> and demonstrated that a universal machine learned force-field can be used to relax hydride structures under arbitrary pressures, with significantly reduced cost. By combining DFT and GNNs, we can establish a more complete map of hydrides under pressure.</p>","PeriodicalId":519934,"journal":{"name":"Materials futures","volume":"3 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11151870/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials futures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2752-5724/ad4a94","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The observation of superconductivity in hydride-based materials under ultrahigh pressures (for example, H3S and LaH10) has fueled the interest in a more data-driven approach to discovering new high-pressure hydride superconductors. In this work, we performed density functional theory (DFT) calculations to predict the critical temperature (Tc) of over 900 hydride materials under a pressure range of (0 to 500) GPa, where we found 122 dynamically stable structures with a Tc above MgB2 (39 K). To accelerate screening, we trained a graph neural network (GNN) model to predict Tc and demonstrated that a universal machine learned force-field can be used to relax hydride structures under arbitrary pressures, with significantly reduced cost. By combining DFT and GNNs, we can establish a more complete map of hydrides under pressure.

利用 DFT 和深度学习进行高压氢化物超导体的数据驱动设计。
在超高压下观察到氢化物基材料(例如 H3S 和 LaH10)的超导性,激发了人们对采用数据驱动方法发现新型高压氢化物超导体的兴趣。在这项工作中,我们进行了密度泛函理论(DFT)计算,以预测 900 多种氢化物材料在(0 至 500)GPa 压力范围内的临界温度(Tc),其中我们发现 122 种动态稳定结构的 Tc 高于 MgB2(39 K)。为了加快筛选速度,我们训练了一个图神经网络 (GNN) 模型来预测 Tc,并证明了一个通用的机器学习力场可用于在任意压力下松弛氢化物结构,而且成本大大降低。通过结合 DFT 和 GNN,我们可以建立更完整的压力下氢化物图谱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信