CheRRI-Accurate classification of the biological relevance of putative RNA-RNA interaction sites.

IF 11.8 2区 生物学 Q1 MULTIDISCIPLINARY SCIENCES
Teresa Müller, Stefan Mautner, Pavankumar Videm, Florian Eggenhofer, Martin Raden, Rolf Backofen
{"title":"CheRRI-Accurate classification of the biological relevance of putative RNA-RNA interaction sites.","authors":"Teresa Müller, Stefan Mautner, Pavankumar Videm, Florian Eggenhofer, Martin Raden, Rolf Backofen","doi":"10.1093/gigascience/giae022","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>RNA-RNA interactions are key to a wide range of cellular functions. The detection of potential interactions helps to understand the underlying processes. However, potential interactions identified via in silico or experimental high-throughput methods can lack precision because of a high false-positive rate.</p><p><strong>Results: </strong>We present CheRRI, the first tool to evaluate the biological relevance of putative RNA-RNA interaction sites. CheRRI filters candidates via a machine learning-based model trained on experimental RNA-RNA interactome data. Its unique setup combines interactome data and an established thermodynamic prediction tool to integrate experimental data with state-of-the-art computational models. Applying these data to an automated machine learning approach provides the opportunity to not only filter data for potential false positives but also tailor the underlying interaction site model to specific needs.</p><p><strong>Conclusions: </strong>CheRRI is a stand-alone postprocessing tool to filter either predicted or experimentally identified potential RNA-RNA interactions on a genomic level to enhance the quality of interaction candidates. It is easy to install (via conda, pip packages), use (via Galaxy), and integrate into existing RNA-RNA interaction pipelines.</p>","PeriodicalId":12581,"journal":{"name":"GigaScience","volume":"13 ","pages":""},"PeriodicalIF":11.8000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11152173/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GigaScience","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gigascience/giae022","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: RNA-RNA interactions are key to a wide range of cellular functions. The detection of potential interactions helps to understand the underlying processes. However, potential interactions identified via in silico or experimental high-throughput methods can lack precision because of a high false-positive rate.

Results: We present CheRRI, the first tool to evaluate the biological relevance of putative RNA-RNA interaction sites. CheRRI filters candidates via a machine learning-based model trained on experimental RNA-RNA interactome data. Its unique setup combines interactome data and an established thermodynamic prediction tool to integrate experimental data with state-of-the-art computational models. Applying these data to an automated machine learning approach provides the opportunity to not only filter data for potential false positives but also tailor the underlying interaction site model to specific needs.

Conclusions: CheRRI is a stand-alone postprocessing tool to filter either predicted or experimentally identified potential RNA-RNA interactions on a genomic level to enhance the quality of interaction candidates. It is easy to install (via conda, pip packages), use (via Galaxy), and integrate into existing RNA-RNA interaction pipelines.

CheRRI--对假定的 RNA-RNA 相互作用位点的生物学相关性进行精确分类。
背景:RNA-RNA 相互作用是多种细胞功能的关键。检测潜在的相互作用有助于了解潜在的过程。然而,由于假阳性率较高,通过硅学或实验高通量方法确定的潜在相互作用可能缺乏精确性:结果:我们提出了 CheRRI,这是第一个评估假定 RNA-RNA 相互作用位点生物学相关性的工具。CheRRI通过基于实验RNA-RNA相互作用组数据训练的机器学习模型筛选候选者。其独特的设置结合了相互作用组数据和成熟的热力学预测工具,将实验数据与最先进的计算模型整合在一起。将这些数据应用于自动机器学习方法,不仅可以过滤潜在的假阳性数据,还可以根据具体需要定制底层相互作用位点模型:CheRRI是一种独立的后处理工具,可在基因组水平上过滤预测或实验确定的潜在RNA-RNA相互作用,以提高候选相互作用的质量。它易于安装(通过 conda、pip 包)、使用(通过 Galaxy),并能集成到现有的 RNA-RNA 相互作用管道中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
GigaScience
GigaScience MULTIDISCIPLINARY SCIENCES-
CiteScore
15.50
自引率
1.10%
发文量
119
审稿时长
1 weeks
期刊介绍: GigaScience seeks to transform data dissemination and utilization in the life and biomedical sciences. As an online open-access open-data journal, it specializes in publishing "big-data" studies encompassing various fields. Its scope includes not only "omic" type data and the fields of high-throughput biology currently serviced by large public repositories, but also the growing range of more difficult-to-access data, such as imaging, neuroscience, ecology, cohort data, systems biology and other new types of large-scale shareable data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信