An examination of acute physiological and perceptual responses following blood flow restriction exercise using a traditional research device or novel, automated system.
Enrique N Moreno, Elias C Figueroa, Andrew W Heath, Samuel L Buckner
{"title":"An examination of acute physiological and perceptual responses following blood flow restriction exercise using a traditional research device or novel, automated system.","authors":"Enrique N Moreno, Elias C Figueroa, Andrew W Heath, Samuel L Buckner","doi":"10.1088/1361-6579/ad548c","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective</i>. To compare the acute physiological and perceptual responses to blood flow restriction (BFR) exercise using a traditional research device or novel, automated system.<i>Methods</i>. Forty-four resistance trained individuals performed four sets of unilateral elbow flexion exercise (30% one-repetition maximum) to volitional failure using two distinct restrictive devices [SmartCuffs PRO BFR Model (SMARTCUFF), Hokanson E20 Rapid Inflation device (HOKANSON)] and with two levels of BFR [40% limb occlusion pressure (LOP), 80% LOP]. Blood pressure (BP), muscle thickness (MT), and isometric strength (ISO) were assessed prior to and following exercise. Perceptual responses [ratings of perceived exertion (RPE), discomfort] were assessed prior to exercise and following each exercise set.<i>Main results</i>. Data are displayed as means (SD). Immediately following exercise with 40% LOP, there were no statistical differences between devices for BP, MT, and ISO. However, only following Set 1 of exercise, RPE was greater with SMARTCUFF compared to HOKANSON (<i>p</i>< 0.05). In addition, only following Set 2 of exercise, discomfort was greater with HOKANSON compared to SMARTCUFF (<i>p</i>< 0.001). Immediately following exercise with 80% LOP, there were no statistical differences between devices for BP, MT, and ISO. However, only following Set 4 of exercise, RPE was greater with HOKANSON compared to SMARTCUFF (<i>p</i>< 0.05). In addition, following all exercise sets, discomfort was greater with HOKANSON compared to SMARTCUFF (<i>p</i>< 0.001). For repetitions completed with 40% LOP there were no statistical differences between SMARTCUFF and HOKANSON across any exercise sets. For repetitions completed with 80% LOP there were no statistical differences between SMARTCUFF and HOKANSON across Set 1 of exercise (<i>p</i>= 0.34), however, for Sets 2-4 of exercise, significantly greater number of repetitions were completed during SMARTCUFF than HOKANSON.<i>Significance</i>. The present study provides valuable insight into the efficacy of a novel, automated BFR system (SMARTCUFF) eliciting comparable acute physiological responses to BFR exercise and in some cases favorable perceptual responses when compared to a traditional research device (HOKANSON).</p>","PeriodicalId":20047,"journal":{"name":"Physiological measurement","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological measurement","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6579/ad548c","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Objective. To compare the acute physiological and perceptual responses to blood flow restriction (BFR) exercise using a traditional research device or novel, automated system.Methods. Forty-four resistance trained individuals performed four sets of unilateral elbow flexion exercise (30% one-repetition maximum) to volitional failure using two distinct restrictive devices [SmartCuffs PRO BFR Model (SMARTCUFF), Hokanson E20 Rapid Inflation device (HOKANSON)] and with two levels of BFR [40% limb occlusion pressure (LOP), 80% LOP]. Blood pressure (BP), muscle thickness (MT), and isometric strength (ISO) were assessed prior to and following exercise. Perceptual responses [ratings of perceived exertion (RPE), discomfort] were assessed prior to exercise and following each exercise set.Main results. Data are displayed as means (SD). Immediately following exercise with 40% LOP, there were no statistical differences between devices for BP, MT, and ISO. However, only following Set 1 of exercise, RPE was greater with SMARTCUFF compared to HOKANSON (p< 0.05). In addition, only following Set 2 of exercise, discomfort was greater with HOKANSON compared to SMARTCUFF (p< 0.001). Immediately following exercise with 80% LOP, there were no statistical differences between devices for BP, MT, and ISO. However, only following Set 4 of exercise, RPE was greater with HOKANSON compared to SMARTCUFF (p< 0.05). In addition, following all exercise sets, discomfort was greater with HOKANSON compared to SMARTCUFF (p< 0.001). For repetitions completed with 40% LOP there were no statistical differences between SMARTCUFF and HOKANSON across any exercise sets. For repetitions completed with 80% LOP there were no statistical differences between SMARTCUFF and HOKANSON across Set 1 of exercise (p= 0.34), however, for Sets 2-4 of exercise, significantly greater number of repetitions were completed during SMARTCUFF than HOKANSON.Significance. The present study provides valuable insight into the efficacy of a novel, automated BFR system (SMARTCUFF) eliciting comparable acute physiological responses to BFR exercise and in some cases favorable perceptual responses when compared to a traditional research device (HOKANSON).
期刊介绍:
Physiological Measurement publishes papers about the quantitative assessment and visualization of physiological function in clinical research and practice, with an emphasis on the development of new methods of measurement and their validation.
Papers are published on topics including:
applied physiology in illness and health
electrical bioimpedance, optical and acoustic measurement techniques
advanced methods of time series and other data analysis
biomedical and clinical engineering
in-patient and ambulatory monitoring
point-of-care technologies
novel clinical measurements of cardiovascular, neurological, and musculoskeletal systems.
measurements in molecular, cellular and organ physiology and electrophysiology
physiological modeling and simulation
novel biomedical sensors, instruments, devices and systems
measurement standards and guidelines.