{"title":"A comparative simulation study of piezoelectric properties in zigzag and armchair boron nitride nanotubes: by discovering a pioneering protocol","authors":"Moein Adel, Peyman Keyhanvar, Masoumeh Zahmatkeshan, Zahed Tavangari, Neda Keyhanvar","doi":"10.1007/s10910-024-01635-3","DOIUrl":null,"url":null,"abstract":"<div><p>Piezoelectric nanostructures have attracted significant attention owing to their capacity for converting mechanical energy into electrical energy, enabling applications in biomedical fields, actuators, and energy harvesting devices. Boron nitride nanotubes (BNNTs) exhibit unique properties that make them attractive candidates for piezoelectric applications. However, the influence of BNNT chiralities on their piezoelectric behavior has not been thoroughly explored. In this study, we investigated the piezoelectric effect of zigzag and armchair chiralities of BNNT structures, aiming to elucidate the relationship between chirality and piezoelectric response by discovering a novel protocol for simulating the electrical behavior of BNNTs at the nanoscale level. We employed a computational method to examine the piezoelectric potential of BNNT structures. First, we established an equivalent-sized three-dimensional (3D) model of zigzag and armchair BNNT structures using nanotube modeler software. The obtained models were then subjected to mesh analysis to generate finite element method simulations. The simulations were finally performed to analyze the electrical response of the BNNT structures under external mechanical forces. We observed that the electrical responses of zigzag BNNT were 1.6 times greater than armchair one. In conclusion, our study sheds light on the piezoelectric potential of zigzag and armchair chiralities of BNNT structures. Furthermore, our findings contribute to the understanding of the electrical properties of BNNTs and their potential for various medical and industrial applications. The knowledge gained from this study provides a foundation for further research and development in the field of piezoelectric nanostructures, paving the way for innovative advancements in nanotechnology.</p></div>","PeriodicalId":648,"journal":{"name":"Journal of Mathematical Chemistry","volume":"62 10","pages":"2943 - 2958"},"PeriodicalIF":1.7000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10910-024-01635-3","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Piezoelectric nanostructures have attracted significant attention owing to their capacity for converting mechanical energy into electrical energy, enabling applications in biomedical fields, actuators, and energy harvesting devices. Boron nitride nanotubes (BNNTs) exhibit unique properties that make them attractive candidates for piezoelectric applications. However, the influence of BNNT chiralities on their piezoelectric behavior has not been thoroughly explored. In this study, we investigated the piezoelectric effect of zigzag and armchair chiralities of BNNT structures, aiming to elucidate the relationship between chirality and piezoelectric response by discovering a novel protocol for simulating the electrical behavior of BNNTs at the nanoscale level. We employed a computational method to examine the piezoelectric potential of BNNT structures. First, we established an equivalent-sized three-dimensional (3D) model of zigzag and armchair BNNT structures using nanotube modeler software. The obtained models were then subjected to mesh analysis to generate finite element method simulations. The simulations were finally performed to analyze the electrical response of the BNNT structures under external mechanical forces. We observed that the electrical responses of zigzag BNNT were 1.6 times greater than armchair one. In conclusion, our study sheds light on the piezoelectric potential of zigzag and armchair chiralities of BNNT structures. Furthermore, our findings contribute to the understanding of the electrical properties of BNNTs and their potential for various medical and industrial applications. The knowledge gained from this study provides a foundation for further research and development in the field of piezoelectric nanostructures, paving the way for innovative advancements in nanotechnology.
期刊介绍:
The Journal of Mathematical Chemistry (JOMC) publishes original, chemically important mathematical results which use non-routine mathematical methodologies often unfamiliar to the usual audience of mainstream experimental and theoretical chemistry journals. Furthermore JOMC publishes papers on novel applications of more familiar mathematical techniques and analyses of chemical problems which indicate the need for new mathematical approaches.
Mathematical chemistry is a truly interdisciplinary subject, a field of rapidly growing importance. As chemistry becomes more and more amenable to mathematically rigorous study, it is likely that chemistry will also become an alert and demanding consumer of new mathematical results. The level of complexity of chemical problems is often very high, and modeling molecular behaviour and chemical reactions does require new mathematical approaches. Chemistry is witnessing an important shift in emphasis: simplistic models are no longer satisfactory, and more detailed mathematical understanding of complex chemical properties and phenomena are required. From theoretical chemistry and quantum chemistry to applied fields such as molecular modeling, drug design, molecular engineering, and the development of supramolecular structures, mathematical chemistry is an important discipline providing both explanations and predictions. JOMC has an important role in advancing chemistry to an era of detailed understanding of molecules and reactions.