Additive cycle complex and coherent duality

Fei Ren
{"title":"Additive cycle complex and coherent duality","authors":"Fei Ren","doi":"arxiv-2406.01212","DOIUrl":null,"url":null,"abstract":"Let $k$ be a field of positive characteristic $p$, and $X$ be a separated of\nfinite type $k$-scheme of dimension $d$. We construct a cycle map from the\nadditive cycle complex to the residual complex of Serre-Grothendieck coherent\nduality theory. This map is compatible with a cubical version of the map\nconstructed in [Ren23] arXiv:2104.09662 when $k$ is perfect. As a corollary, we\nget injectivity statements for (additive) higher Chow groups as well as for\nmotivic cohomology (with modulus) with $\\mathbb{Z}/p$ coefficients when $k$ is\nalgebraically closed.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.01212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $k$ be a field of positive characteristic $p$, and $X$ be a separated of finite type $k$-scheme of dimension $d$. We construct a cycle map from the additive cycle complex to the residual complex of Serre-Grothendieck coherent duality theory. This map is compatible with a cubical version of the map constructed in [Ren23] arXiv:2104.09662 when $k$ is perfect. As a corollary, we get injectivity statements for (additive) higher Chow groups as well as for motivic cohomology (with modulus) with $\mathbb{Z}/p$ coefficients when $k$ is algebraically closed.
相加循环复合体和相干二重性
让 $k$ 是正特征 $p$ 的域,而 $X$ 是维数为 $d$ 的分离无穷型 $k$ 方案。我们构建了一个从加法循环复数到塞尔-格罗thendieck 相干性理论残差复数的循环映射。当$k$为完美时,这个映射与[Ren23] arXiv:2104.09662中构建的映射的立方体版本是兼容的。作为推论,当 $k$ 是代数闭合的时候,我们得到了(可加的)高周群的注入性声明,以及具有 $\mathbb{Z}/p$ 系数的形式同调(带模)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信