{"title":"On the Boussinesq Hypothesis for a Stochastic Proudman–Taylor Model","authors":"Franco Flandoli, Dejun Luo","doi":"10.1137/23m1587944","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Mathematical Analysis, Volume 56, Issue 3, Page 3886-3923, June 2024. <br/> Abstract. We introduce a stochastic version of the Proudman–Taylor model, a 2D-3C fluid approximation of the 3D Navier–Stokes equations, with the small-scale turbulence modeled by a transport-stretching noise. For this model we may rigorously take a scaling limit leading to a deterministic model with additional viscosity on large scales. In certain choice of noises without mirror symmetry, we identify an anisotropic kinetic alpha (AKA) effect. This is the first example with a 3D structure and a stretching noise term.","PeriodicalId":51150,"journal":{"name":"SIAM Journal on Mathematical Analysis","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Mathematical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1587944","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
SIAM Journal on Mathematical Analysis, Volume 56, Issue 3, Page 3886-3923, June 2024. Abstract. We introduce a stochastic version of the Proudman–Taylor model, a 2D-3C fluid approximation of the 3D Navier–Stokes equations, with the small-scale turbulence modeled by a transport-stretching noise. For this model we may rigorously take a scaling limit leading to a deterministic model with additional viscosity on large scales. In certain choice of noises without mirror symmetry, we identify an anisotropic kinetic alpha (AKA) effect. This is the first example with a 3D structure and a stretching noise term.
期刊介绍:
SIAM Journal on Mathematical Analysis (SIMA) features research articles of the highest quality employing innovative analytical techniques to treat problems in the natural sciences. Every paper has content that is primarily analytical and that employs mathematical methods in such areas as partial differential equations, the calculus of variations, functional analysis, approximation theory, harmonic or wavelet analysis, or dynamical systems. Additionally, every paper relates to a model for natural phenomena in such areas as fluid mechanics, materials science, quantum mechanics, biology, mathematical physics, or to the computational analysis of such phenomena.
Submission of a manuscript to a SIAM journal is representation by the author that the manuscript has not been published or submitted simultaneously for publication elsewhere.
Typical papers for SIMA do not exceed 35 journal pages. Substantial deviations from this page limit require that the referees, editor, and editor-in-chief be convinced that the increased length is both required by the subject matter and justified by the quality of the paper.