{"title":"Using Reinforcement Learning and Error Models for Drone Precision Landing","authors":"Sepehr Saryazdi, Balsam Alkouz, Athman Bouguettaya, Abdallah Lakhdari","doi":"10.1145/3670997","DOIUrl":null,"url":null,"abstract":"<p>We propose a novel framework for achieving precision landing in drone services. The proposed framework consists of two distinct decoupled modules, each designed to address a specific aspect of landing accuracy. The first module is concerned with intrinsic errors, where new error models are introduced. This includes a spherical error model that takes into account the orientation of the drone. Additionally, we propose a live position correction algorithm that employs the error models to correct for intrinsic errors in real-time. The second module focuses on external wind forces and presents an aerodynamics model with wind generation to simulate the drone’s physical environment. We utilize reinforcement learning to train the drone in simulation with the goal of landing precisely under dynamic wind conditions. Experimental results, conducted through simulations and validated in the physical world, demonstrate that our proposed framework significantly increases the landing accuracy while maintaining a low onboard computational cost.</p>","PeriodicalId":50911,"journal":{"name":"ACM Transactions on Internet Technology","volume":"43 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Internet Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3670997","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
We propose a novel framework for achieving precision landing in drone services. The proposed framework consists of two distinct decoupled modules, each designed to address a specific aspect of landing accuracy. The first module is concerned with intrinsic errors, where new error models are introduced. This includes a spherical error model that takes into account the orientation of the drone. Additionally, we propose a live position correction algorithm that employs the error models to correct for intrinsic errors in real-time. The second module focuses on external wind forces and presents an aerodynamics model with wind generation to simulate the drone’s physical environment. We utilize reinforcement learning to train the drone in simulation with the goal of landing precisely under dynamic wind conditions. Experimental results, conducted through simulations and validated in the physical world, demonstrate that our proposed framework significantly increases the landing accuracy while maintaining a low onboard computational cost.
期刊介绍:
ACM Transactions on Internet Technology (TOIT) brings together many computing disciplines including computer software engineering, computer programming languages, middleware, database management, security, knowledge discovery and data mining, networking and distributed systems, communications, performance and scalability etc. TOIT will cover the results and roles of the individual disciplines and the relationshipsamong them.