Muhammad Muzammil Azad, Yubin Cheon, Izaz Raouf, Salman Khalid, Heung Soo Kim
{"title":"Intelligent Computational Methods for Damage Detection of Laminated Composite Structures for Mobility Applications: A Comprehensive Review","authors":"Muhammad Muzammil Azad, Yubin Cheon, Izaz Raouf, Salman Khalid, Heung Soo Kim","doi":"10.1007/s11831-024-10146-y","DOIUrl":null,"url":null,"abstract":"<div><p>The mobility applications of laminated composites are constantly expanding due to their improved mechanical properties and superior strength-to-weight ratio. Such advancements directly contribute to a significant reduction in energy consumption in mobile applications. However, the orthotropic nature of these materials results in complex failure modes that require advanced damage detection techniques to prevent catastrophic failures. Therefore, various non-destructive evaluation techniques for structural health monitoring (SHM) of laminated composites are constantly being developed. Moreover, due to the latest advancements in intelligent computational methods, such as machine learning and deep learning, more reliable inspections can be performed. This review discusses current advances in SHM of composite laminates for safety–critical mobility applications such as aerospace, automobile, and marine. A comprehensive overview of the steps involved in SHM of mobility composite structures, such as sensing systems and intelligent computational methods, is presented. Additionally, the review discusses the procedure for developing these intelligent computational methods. The article also describes various public-domain datasets that readers can utilize to create novel, intelligent computational methods. Finally, potential research directions are highlighted that will enable researchers and practitioners to develop more accurate and efficient damage monitoring systems for mobility composite structures.</p></div>","PeriodicalId":55473,"journal":{"name":"Archives of Computational Methods in Engineering","volume":"32 1","pages":"441 - 469"},"PeriodicalIF":9.7000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Computational Methods in Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11831-024-10146-y","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The mobility applications of laminated composites are constantly expanding due to their improved mechanical properties and superior strength-to-weight ratio. Such advancements directly contribute to a significant reduction in energy consumption in mobile applications. However, the orthotropic nature of these materials results in complex failure modes that require advanced damage detection techniques to prevent catastrophic failures. Therefore, various non-destructive evaluation techniques for structural health monitoring (SHM) of laminated composites are constantly being developed. Moreover, due to the latest advancements in intelligent computational methods, such as machine learning and deep learning, more reliable inspections can be performed. This review discusses current advances in SHM of composite laminates for safety–critical mobility applications such as aerospace, automobile, and marine. A comprehensive overview of the steps involved in SHM of mobility composite structures, such as sensing systems and intelligent computational methods, is presented. Additionally, the review discusses the procedure for developing these intelligent computational methods. The article also describes various public-domain datasets that readers can utilize to create novel, intelligent computational methods. Finally, potential research directions are highlighted that will enable researchers and practitioners to develop more accurate and efficient damage monitoring systems for mobility composite structures.
期刊介绍:
Archives of Computational Methods in Engineering
Aim and Scope:
Archives of Computational Methods in Engineering serves as an active forum for disseminating research and advanced practices in computational engineering, particularly focusing on mechanics and related fields. The journal emphasizes extended state-of-the-art reviews in selected areas, a unique feature of its publication.
Review Format:
Reviews published in the journal offer:
A survey of current literature
Critical exposition of topics in their full complexity
By organizing the information in this manner, readers can quickly grasp the focus, coverage, and unique features of the Archives of Computational Methods in Engineering.