Group-theoretical classification of orientable objects and particle phenomenology

D. M. Gitman, A. L. Shelepin
{"title":"Group-theoretical classification of orientable objects and particle phenomenology","authors":"D. M. Gitman, A. L. Shelepin","doi":"arxiv-2406.00089","DOIUrl":null,"url":null,"abstract":"In our previous works, we have proposed a quantum description of relativistic\norientable objects by a scalar field on the Poincar\\'{e} group. This\ndescription is, in a sense, a generalization of ideas used by Wigner, Casimir\nand Eckart back in the 1930's in constructing a non-relativistic theory of a\nrigid rotator. The present work is a continuation and development of the above\nmentioned our works. The position of the relativistic orientable object in\nMinkowski space is completely determined by the position of a body-fixed\nreference frame with respect to the space-fixed reference frame, and can be\nspecified by elements $q$ of the motion group of the Minkowski space - the\nPoincar\\'e group $M(3,1)$. Quantum states of relativistic orientable objects\nare described by scalar wave functions $f(q)$ where the arguments $q=(x,z)$\nconsist of Minkowski space-time points $x$, and of orientation variables $z$\ngiven by elements of the matrix $Z\\in SL(2,C)$. Technically, we introduce and\nstudy the so-called double-sided representation\n$\\boldsymbol{T}(\\boldsymbol{g})f(q)=f(g_l^{-1}qg_r)$,\n$\\boldsymbol{g}=(g_l,g_r)\\in \\boldsymbol{M}$, of the group $\\boldsymbol{M}$, in\nthe space of the scalar functions $f(q)$. Here the left multiplication by\n$g_l^{-1}$ corresponds to a change of space-fixed reference frame, whereas the\nright multiplication by $g_r$ corresponds to a change of body-fixed reference\nframe. On this basis, we develop a classification of the orientable objects and\ndraw the attention to a possibility of connecting these results with the\nparticle phenomenology. In particular, we demonstrate how one may identify\nfields described by linear and quadratic functions of $z$ with known elementary\nparticles of spins $0$,$\\frac{1}{2}$, and $1$. The developed classification\ndoes not contradict the phenomenology of elementary particles and, moreover, in\nsome cases give its group-theoretic explanation.","PeriodicalId":501190,"journal":{"name":"arXiv - PHYS - General Physics","volume":"77 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - General Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.00089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In our previous works, we have proposed a quantum description of relativistic orientable objects by a scalar field on the Poincar\'{e} group. This description is, in a sense, a generalization of ideas used by Wigner, Casimir and Eckart back in the 1930's in constructing a non-relativistic theory of a rigid rotator. The present work is a continuation and development of the above mentioned our works. The position of the relativistic orientable object in Minkowski space is completely determined by the position of a body-fixed reference frame with respect to the space-fixed reference frame, and can be specified by elements $q$ of the motion group of the Minkowski space - the Poincar\'e group $M(3,1)$. Quantum states of relativistic orientable objects are described by scalar wave functions $f(q)$ where the arguments $q=(x,z)$ consist of Minkowski space-time points $x$, and of orientation variables $z$ given by elements of the matrix $Z\in SL(2,C)$. Technically, we introduce and study the so-called double-sided representation $\boldsymbol{T}(\boldsymbol{g})f(q)=f(g_l^{-1}qg_r)$, $\boldsymbol{g}=(g_l,g_r)\in \boldsymbol{M}$, of the group $\boldsymbol{M}$, in the space of the scalar functions $f(q)$. Here the left multiplication by $g_l^{-1}$ corresponds to a change of space-fixed reference frame, whereas the right multiplication by $g_r$ corresponds to a change of body-fixed reference frame. On this basis, we develop a classification of the orientable objects and draw the attention to a possibility of connecting these results with the particle phenomenology. In particular, we demonstrate how one may identify fields described by linear and quadratic functions of $z$ with known elementary particles of spins $0$,$\frac{1}{2}$, and $1$. The developed classification does not contradict the phenomenology of elementary particles and, moreover, in some cases give its group-theoretic explanation.
可定向物体的群论分类和粒子现象学
在我们以前的著作中,我们提出了用Poincar\'{e} 群上的标量场对相对论可导向物体的量子描述。从某种意义上说,这种描述是对维格纳、卡西米尔和埃卡特早在 20 世纪 30 年代构建非相对论的刚性旋转体理论时所使用的思想的概括。本研究是上述工作的延续和发展。相对论可定向物体在闵科夫斯基空间中的位置完全由身体固定参照系相对于空间固定参照系的位置决定,并可由闵科夫斯基空间的运动群--Poincar\'e 群 $M(3,1)$的元素 $q$ 指定。相对论可定向物体的量子态由标量波函数$f(q)$描述,其中参数$q=(x,z)$由明考斯基时空点$x$和定向变量$z$组成,而定向变量$z$由SL(2,C)$中矩阵$Z/的元素给出。在技术上,我们引入并研究了标量函数 $f(q)$空间中群 $\boldsymbol{M}$ 的所谓双面表示 $\boldsymbol{T}(\boldsymbol{g})f(q)=f(g_l^{-1}qg_r)$,$\boldsymbol{g}=(g_l,g_r)\\boldsymbol{M}$。这里,左边乘以$g_l^{-1}$对应于空间固定参照系的改变,而右边乘以$g_r$对应于身体固定参照系的改变。在此基础上,我们对可定向物体进行了分类,并提请注意将这些结果与粒子现象学联系起来的可能性。特别是,我们展示了如何将$z$的线性和二次函数描述的场与已知的自旋$0$、$\frac{1}{2}$和$1$的基本粒子相识别。所建立的分类与基本粒子的现象学并不矛盾,而且在某些情况下还给出了群论的解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信