A Study of the Microhardness and Plasticity Parameter of Lead in External Magnetic Fields with an Induction of up to 0.5 T

IF 1.1 4区 物理与天体物理 Q4 PHYSICS, APPLIED
A. A. Serebryakova, D. V. Zaguliaev, V. V. Shlyarov, V. E. Gromov, K. V. Aksenova
{"title":"A Study of the Microhardness and Plasticity Parameter of Lead in External Magnetic Fields with an Induction of up to 0.5 T","authors":"A. A. Serebryakova, D. V. Zaguliaev, V. V. Shlyarov, V. E. Gromov, K. V. Aksenova","doi":"10.1134/s1063784224700488","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The microhardness of samples of technically pure lead was measured with and without exposure to an external magnetic field with inductions of 0.3, 0.4, and 0.5 T. Dependences of the microhardness of the C2 lead surface on the exposure time in a magnetic field were obtained reflecting the influence of the magnetic field on the plastic characteristics of lead. The exposure time during which the effect on microhardness is maximum was identified. Microhardness tests were carried out in addition on samples of technically pure lead without and under the influence of an external magnetic field with inductions of 0.3, 0.4, and 0.5 T and exposure times of 0.25, 0.5, and 1 h. Based on the microhardness data thus obtained, the plasticity parameter of lead in the original state and after exposure to an external magnetic field was calculated and the dependences of the plasticity parameter on the exposure time are shown. The nature of the plasticity parameter variation during lead exposure to a magnetic field with an induction of up to 0.5 T was identified. The percentage changes in microhardness values depending on the magnetic field induction are shown.</p>","PeriodicalId":783,"journal":{"name":"Technical Physics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1134/s1063784224700488","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The microhardness of samples of technically pure lead was measured with and without exposure to an external magnetic field with inductions of 0.3, 0.4, and 0.5 T. Dependences of the microhardness of the C2 lead surface on the exposure time in a magnetic field were obtained reflecting the influence of the magnetic field on the plastic characteristics of lead. The exposure time during which the effect on microhardness is maximum was identified. Microhardness tests were carried out in addition on samples of technically pure lead without and under the influence of an external magnetic field with inductions of 0.3, 0.4, and 0.5 T and exposure times of 0.25, 0.5, and 1 h. Based on the microhardness data thus obtained, the plasticity parameter of lead in the original state and after exposure to an external magnetic field was calculated and the dependences of the plasticity parameter on the exposure time are shown. The nature of the plasticity parameter variation during lead exposure to a magnetic field with an induction of up to 0.5 T was identified. The percentage changes in microhardness values depending on the magnetic field induction are shown.

Abstract Image

铅在高达 0.5 T 感应外磁场中的显微硬度和塑性参数研究
摘要 在 0.3、0.4 和 0.5 T 的感应外磁场中测量了技术纯铅样品的显微硬度,并得出了 C2 铅表面的显微硬度与磁场中暴露时间的关系,反映了磁场对铅塑性特征的影响。确定了对显微硬度影响最大的暴露时间。此外,还在没有外磁场和受外磁场影响的情况下对技术纯铅样品进行了显微硬度测试,磁感应强度分别为 0.3、0.4 和 0.5 T,暴露时间分别为 0.25、0.5 和 1 h。确定了铅暴露在磁感应强度高达 0.5 T 的磁场中时塑性参数变化的性质。显微硬度值的变化百分比取决于磁场感应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Technical Physics
Technical Physics 物理-物理:应用
CiteScore
1.30
自引率
14.30%
发文量
139
审稿时长
3-6 weeks
期刊介绍: Technical Physics is a journal that contains practical information on all aspects of applied physics, especially instrumentation and measurement techniques. Particular emphasis is put on plasma physics and related fields such as studies of charged particles in electromagnetic fields, synchrotron radiation, electron and ion beams, gas lasers and discharges. Other journal topics are the properties of condensed matter, including semiconductors, superconductors, gases, liquids, and different materials.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信