The Parameterized Complexity of Terminal Monitoring Set

N. R. Aravind, Roopam Saxena
{"title":"The Parameterized Complexity of Terminal Monitoring Set","authors":"N. R. Aravind, Roopam Saxena","doi":"arxiv-2406.01730","DOIUrl":null,"url":null,"abstract":"In Terminal Monitoring Set (TMS), the input is an undirected graph $G=(V,E)$,\ntogether with a collection $T$ of terminal pairs and the goal is to find a\nsubset $S$ of minimum size that hits a shortest path between every pair of\nterminals. We show that this problem is W[2]-hard with respect to solution\nsize. On the positive side, we show that TMS is fixed parameter tractable with\nrespect to solution size plus distance to cluster, solution size plus\nneighborhood diversity, and feedback edge number. For the weighted version of\nthe problem, we obtain a FPT algorithm with respect to vertex cover number, and\nfor a relaxed version of the problem, we show that it is W[1]-hard with respect\nto solution size plus feedback vertex number.","PeriodicalId":501216,"journal":{"name":"arXiv - CS - Discrete Mathematics","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.01730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In Terminal Monitoring Set (TMS), the input is an undirected graph $G=(V,E)$, together with a collection $T$ of terminal pairs and the goal is to find a subset $S$ of minimum size that hits a shortest path between every pair of terminals. We show that this problem is W[2]-hard with respect to solution size. On the positive side, we show that TMS is fixed parameter tractable with respect to solution size plus distance to cluster, solution size plus neighborhood diversity, and feedback edge number. For the weighted version of the problem, we obtain a FPT algorithm with respect to vertex cover number, and for a relaxed version of the problem, we show that it is W[1]-hard with respect to solution size plus feedback vertex number.
终端监测集的参数化复杂性
在终端监测集(TMS)中,输入是一个无向图 $G=(V,E)$,以及终端对集合 $T$,目标是找到最小大小的子集 $S$,在每对终端之间找到一条最短路径。我们证明,这个问题在解大小上是 W[2]-hard 的。从积极的一面来看,我们证明了 TMS 在解大小加到集群的距离、解大小加邻域多样性和反馈边数方面是固定参数可控的。对于该问题的加权版本,我们得到了一个与顶点覆盖数有关的 FPT 算法;对于该问题的松弛版本,我们证明了它在解大小和反馈顶点数方面是 W[1]-hard 的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信