Building the Butterfly Fractal: The Eightfold Way

Indubala I Satija
{"title":"Building the Butterfly Fractal: The Eightfold Way","authors":"Indubala I Satija","doi":"arxiv-2406.00068","DOIUrl":null,"url":null,"abstract":"The hierarchical structure of the butterfly fractal -- the Hofstader\nbutterfly, is found to be described by an octonary tree. In this framework of\nbuilding the butterfly graph, every iteration generates sextuplets of\nbutterflies, each with a tail that is made up of an infinity of butterflies.\nIdentifying {\\it butterfly with a tale} as the building block, the tree is\nconstructed with eight generators represented by unimodular matrices with\ninteger coefficients. This Diophantine description provides one to one mapping\nwith the butterfly fractal, encoding the magnetic flux interval and the\ntopological quantum numbers of every butterfly. The butterfly tree is a\ngeneralization of the ternary tree describing the set of primitive Pythagorean\ntriplets.","PeriodicalId":501502,"journal":{"name":"arXiv - MATH - General Mathematics","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.00068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The hierarchical structure of the butterfly fractal -- the Hofstader butterfly, is found to be described by an octonary tree. In this framework of building the butterfly graph, every iteration generates sextuplets of butterflies, each with a tail that is made up of an infinity of butterflies. Identifying {\it butterfly with a tale} as the building block, the tree is constructed with eight generators represented by unimodular matrices with integer coefficients. This Diophantine description provides one to one mapping with the butterfly fractal, encoding the magnetic flux interval and the topological quantum numbers of every butterfly. The butterfly tree is a generalization of the ternary tree describing the set of primitive Pythagorean triplets.
构建蝴蝶分形八正道
研究发现,蝴蝶分形--霍夫斯塔德蝴蝶--的层次结构可以用一棵八叉树来描述。在这个构建蝴蝶图的框架中,每一次迭代都会生成蝴蝶的六分体,每只蝴蝶都有一条尾巴,尾巴由无穷多的蝴蝶组成。将{(一只有故事的蝴蝶)确定为构建块,八叉树由具有整数系数的单模态矩阵表示的八个生成器构建而成。这种 Diophantine 描述提供了蝴蝶分形的一一映射,编码了每只蝴蝶的磁通量区间和拓扑量子数。蝴蝶树是描述原始毕达哥拉斯三元组的三元树的一般化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信