Spacesuit Textiles from Extreme Fabric Materials: Aromatic Amide Polymer and Boron Nitride Nanotube Composite Fiber for Neutron Shielding and Thermal Management

IF 17.2 1区 工程技术 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ki-Hyun Ryu, Minsung Kang, Jungwon Kim, Nam-Ho You, Se Gyu Jang, Kwang-Un Jeong, Seokhoon Ahn, Dae-Yoon Kim
{"title":"Spacesuit Textiles from Extreme Fabric Materials: Aromatic Amide Polymer and Boron Nitride Nanotube Composite Fiber for Neutron Shielding and Thermal Management","authors":"Ki-Hyun Ryu,&nbsp;Minsung Kang,&nbsp;Jungwon Kim,&nbsp;Nam-Ho You,&nbsp;Se Gyu Jang,&nbsp;Kwang-Un Jeong,&nbsp;Seokhoon Ahn,&nbsp;Dae-Yoon Kim","doi":"10.1007/s42765-024-00432-6","DOIUrl":null,"url":null,"abstract":"<div><p>Space exploration provides unparalleled opportunities for unraveling the mysteries of our origins and exploring planetary systems beyond Earth. Long-distance space missions require successful protection against significant radiation exposure, necessitating the development of effective radiation shielding materials. This study developed aromatic amide polymer (AAP) and boron nitride nanotube (BNNT) composite fibers using lyotropic liquid crystal (LLC) and industrially viable wet-spinning processes. The uniaxially oriented 1D composite fibers provide the necessary continuity and pliability to fabricate 2D macroscopic textiles with low density (1.80 g cm<sup>−3</sup>), mechanical modulus (18.16 GPa), and heat stability (up to 479 °C), while exhibiting the improved thermal neutron absorption cross-section with thermal neutron-shielding performance (0.73 mm<sup>−1</sup>). These composite textiles also show high thermal conductivity (7.88 W m<sup>−1</sup> K<sup>−1</sup>) due to their densely packed and uniaxially oriented structures. These enhanced characteristics render the fibers a highly promising material for space applications, offering robust protection for both astronauts and electronics against the dual threats of radiation and heat.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":"6 5","pages":"1509 - 1520"},"PeriodicalIF":17.2000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Fiber Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42765-024-00432-6","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Space exploration provides unparalleled opportunities for unraveling the mysteries of our origins and exploring planetary systems beyond Earth. Long-distance space missions require successful protection against significant radiation exposure, necessitating the development of effective radiation shielding materials. This study developed aromatic amide polymer (AAP) and boron nitride nanotube (BNNT) composite fibers using lyotropic liquid crystal (LLC) and industrially viable wet-spinning processes. The uniaxially oriented 1D composite fibers provide the necessary continuity and pliability to fabricate 2D macroscopic textiles with low density (1.80 g cm−3), mechanical modulus (18.16 GPa), and heat stability (up to 479 °C), while exhibiting the improved thermal neutron absorption cross-section with thermal neutron-shielding performance (0.73 mm−1). These composite textiles also show high thermal conductivity (7.88 W m−1 K−1) due to their densely packed and uniaxially oriented structures. These enhanced characteristics render the fibers a highly promising material for space applications, offering robust protection for both astronauts and electronics against the dual threats of radiation and heat.

Graphical Abstract

Abstract Image

利用极端织物材料制成的宇航服纺织品:用于中子屏蔽和热管理的芳香族酰胺聚合物和氮化硼纳米管复合纤维
太空探索为揭开人类起源之谜和探索地球以外的行星系统提供了无与伦比的机会。远距离太空任务需要成功抵御大量辐射,因此必须开发有效的辐射屏蔽材料。本研究采用各向同性液晶(LLC)和工业化可行的湿法纺丝工艺,开发了芳香族酰胺聚合物(AAP)和氮化硼纳米管(BNT)复合纤维。这种单轴取向的一维复合纤维具有必要的连续性和柔韧性,可用于制造具有低密度(1.80 g cm-3)、机械模量(18.16 GPa)和热稳定性(高达 479 ℃)的二维宏观纺织品,同时还具有更好的热中子吸收截面和热中子屏蔽性能(0.73 mm-1)。这些复合纺织品还具有高导热性(7.88 W m-1 K-1),这得益于其密集的单轴取向结构。这些增强的特性使纤维成为一种非常有前途的太空应用材料,可为宇航员和电子设备提供强大的保护,使其免受辐射和热量的双重威胁。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
18.70
自引率
11.20%
发文量
109
期刊介绍: Advanced Fiber Materials is a hybrid, peer-reviewed, international and interdisciplinary research journal which aims to publish the most important papers in fibers and fiber-related devices as well as their applications.Indexed by SCIE, EI, Scopus et al. Publishing on fiber or fiber-related materials, technology, engineering and application.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信