Immanuel Bomze, Francesco Rinaldi, Damiano Zeffiro
{"title":"Projection free methods on product domains","authors":"Immanuel Bomze, Francesco Rinaldi, Damiano Zeffiro","doi":"10.1007/s10589-024-00585-5","DOIUrl":null,"url":null,"abstract":"<p>Projection-free block-coordinate methods avoid high computational cost per iteration, and at the same time exploit the particular problem structure of product domains. Frank–Wolfe-like approaches rank among the most popular ones of this type. However, as observed in the literature, there was a gap between the classical Frank–Wolfe theory and the block-coordinate case, with no guarantees of linear convergence rates even for strongly convex objectives in the latter. Moreover, most of previous research concentrated on convex objectives. This study now deals also with the non-convex case and reduces above-mentioned theory gap, in combining a new, fully developed convergence theory with novel active set identification results which ensure that inherent sparsity of solutions can be exploited in an efficient way. Preliminary numerical experiments seem to justify our approach and also show promising results for obtaining global solutions in the non-convex case.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10589-024-00585-5","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Projection-free block-coordinate methods avoid high computational cost per iteration, and at the same time exploit the particular problem structure of product domains. Frank–Wolfe-like approaches rank among the most popular ones of this type. However, as observed in the literature, there was a gap between the classical Frank–Wolfe theory and the block-coordinate case, with no guarantees of linear convergence rates even for strongly convex objectives in the latter. Moreover, most of previous research concentrated on convex objectives. This study now deals also with the non-convex case and reduces above-mentioned theory gap, in combining a new, fully developed convergence theory with novel active set identification results which ensure that inherent sparsity of solutions can be exploited in an efficient way. Preliminary numerical experiments seem to justify our approach and also show promising results for obtaining global solutions in the non-convex case.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.