In silico modelling of mechanical response of breast cancer cell to interstitial fluid flow

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Vaibhav Kalra, Sweta Prabhakar, Anubhav Rawat, Abhishek Kumar Tiwari, Dharmendra Tripathi
{"title":"In silico modelling of mechanical response of breast cancer cell to interstitial fluid flow","authors":"Vaibhav Kalra, Sweta Prabhakar, Anubhav Rawat, Abhishek Kumar Tiwari, Dharmendra Tripathi","doi":"10.1098/rspa.2024.0046","DOIUrl":null,"url":null,"abstract":"<p>A cell’s mechanical environment regulates biological activities. Several studies have investigated the response of healthy epithelial mammary (MCF10A) and breast cancer (MCF7) cells to vascular and interstitial fluid motion-induced hydrodynamic forces. The mechanical stiffness of healthy and breast cancer cells differ significantly, which can influence the transduction of forces regulating the cell’s invasive behaviour. This aspect has not been well explored in the literature. The present work investigates the mechanical response of MCF10A and MCF7 cells to tissue-level interstitial fluid flow. A two-dimensional fluid flow–cell interaction model is developed based on the actual shapes of the cells, acquired from experimental fluorescent images. The material properties of the cell compartments (cytoplasm and nucleus) were assigned in the model based on the literature. The outcomes indicate that healthy MCF10A cells experience higher von Mises and shear stresses than the MCF7 cells. In addition, the MCF7 cell experiences higher strain and displacements than its healthy counterpart. Thus, the different mechano-responsiveness of MCF10A and MCF7 cells could be responsible for regulating the invasive potential of the cells. This work enhances our understanding of mechanotransduction activities involved in cancer malignancy which can further help in cancer diagnosis based on cell mechanotype.</p>","PeriodicalId":20716,"journal":{"name":"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rspa.2024.0046","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

A cell’s mechanical environment regulates biological activities. Several studies have investigated the response of healthy epithelial mammary (MCF10A) and breast cancer (MCF7) cells to vascular and interstitial fluid motion-induced hydrodynamic forces. The mechanical stiffness of healthy and breast cancer cells differ significantly, which can influence the transduction of forces regulating the cell’s invasive behaviour. This aspect has not been well explored in the literature. The present work investigates the mechanical response of MCF10A and MCF7 cells to tissue-level interstitial fluid flow. A two-dimensional fluid flow–cell interaction model is developed based on the actual shapes of the cells, acquired from experimental fluorescent images. The material properties of the cell compartments (cytoplasm and nucleus) were assigned in the model based on the literature. The outcomes indicate that healthy MCF10A cells experience higher von Mises and shear stresses than the MCF7 cells. In addition, the MCF7 cell experiences higher strain and displacements than its healthy counterpart. Thus, the different mechano-responsiveness of MCF10A and MCF7 cells could be responsible for regulating the invasive potential of the cells. This work enhances our understanding of mechanotransduction activities involved in cancer malignancy which can further help in cancer diagnosis based on cell mechanotype.

乳腺癌细胞对间质流体流动的机械反应的硅学建模
细胞的机械环境可调节生物活动。多项研究调查了健康乳腺上皮细胞(MCF10A)和乳腺癌细胞(MCF7)对血管和间质流体运动引起的流体动力的反应。健康细胞和乳腺癌细胞的机械刚度差别很大,这会影响调节细胞侵袭行为的力的传导。这方面的文献尚未进行深入探讨。本研究调查了 MCF10A 和 MCF7 细胞对组织级间质流体流动的机械响应。根据实验荧光图像获得的细胞实际形状,建立了一个二维流体流动-细胞相互作用模型。模型中细胞区(细胞质和细胞核)的材料属性是根据文献资料确定的。结果表明,健康的 MCF10A 细胞比 MCF7 细胞承受更高的 von Mises 和剪切应力。此外,MCF7 细胞的应变和位移也高于健康细胞。因此,MCF10A 和 MCF7 细胞不同的机械反应性可能是调节细胞侵袭潜能的原因。这项研究加深了我们对癌症恶性肿瘤中涉及的机械传导活动的了解,有助于根据细胞机械型进行癌症诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.40
自引率
5.70%
发文量
227
审稿时长
3.0 months
期刊介绍: Proceedings A has an illustrious history of publishing pioneering and influential research articles across the entire range of the physical and mathematical sciences. These have included Maxwell"s electromagnetic theory, the Braggs" first account of X-ray crystallography, Dirac"s relativistic theory of the electron, and Watson and Crick"s detailed description of the structure of DNA.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信