Uplift modeling with quasi-loss-functions

IF 2.8 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jinping Hu, Evert de Haan, Bernd Skiera
{"title":"Uplift modeling with quasi-loss-functions","authors":"Jinping Hu, Evert de Haan, Bernd Skiera","doi":"10.1007/s10618-024-01042-x","DOIUrl":null,"url":null,"abstract":"<p>Uplift modeling, also referred to as heterogeneous treatment effect estimation, is a machine learning technique utilized in marketing for estimating the incremental impact of treatment on the response of each customer. Uplift models face a fundamental challenge in causal inference because the variable of interest (i.e., the uplift itself) remains unobservable. As a result, popular uplift models (such as meta-learners and uplift trees) do not incorporate loss functions for uplifts in their algorithms. This article addresses that gap by proposing uplift models with quasi-loss functions (UpliftQL models), which separately use four specially designed quasi-loss functions for uplift estimation in algorithms. Using simulated data, our analysis reveals that, on average, 55% (34%) of the top five models from a set of 14 are UpliftQL models for binary (continuous) outcomes. Further empirical data analysis shows that over 60% of the top-performing models are consistently UpliftQL models.</p>","PeriodicalId":55183,"journal":{"name":"Data Mining and Knowledge Discovery","volume":"23 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Mining and Knowledge Discovery","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10618-024-01042-x","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Uplift modeling, also referred to as heterogeneous treatment effect estimation, is a machine learning technique utilized in marketing for estimating the incremental impact of treatment on the response of each customer. Uplift models face a fundamental challenge in causal inference because the variable of interest (i.e., the uplift itself) remains unobservable. As a result, popular uplift models (such as meta-learners and uplift trees) do not incorporate loss functions for uplifts in their algorithms. This article addresses that gap by proposing uplift models with quasi-loss functions (UpliftQL models), which separately use four specially designed quasi-loss functions for uplift estimation in algorithms. Using simulated data, our analysis reveals that, on average, 55% (34%) of the top five models from a set of 14 are UpliftQL models for binary (continuous) outcomes. Further empirical data analysis shows that over 60% of the top-performing models are consistently UpliftQL models.

用准损耗函数进行上浮建模
提升模型,也称为异质性治疗效果估计,是市场营销中用来估计治疗对每个客户反应的增量影响的一种机器学习技术。提升模型在因果推断方面面临着根本性的挑战,因为相关变量(即提升本身)仍然是不可观测的。因此,流行的上行模型(如元学习器和上行树)并没有在其算法中纳入上行的损失函数。本文针对这一缺陷,提出了具有准损失函数的上行模型(UpliftQL 模型),在算法中分别使用四个专门设计的准损失函数进行上行估计。利用模拟数据,我们的分析表明,在一组 14 个模型中,平均前五个模型中有 55% (34%)是二元(连续)结果的 UpliftQL 模型。进一步的经验数据分析显示,超过 60% 的表现最好的模型始终是 UpliftQL 模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Data Mining and Knowledge Discovery
Data Mining and Knowledge Discovery 工程技术-计算机:人工智能
CiteScore
10.40
自引率
4.20%
发文量
68
审稿时长
10 months
期刊介绍: Advances in data gathering, storage, and distribution have created a need for computational tools and techniques to aid in data analysis. Data Mining and Knowledge Discovery in Databases (KDD) is a rapidly growing area of research and application that builds on techniques and theories from many fields, including statistics, databases, pattern recognition and learning, data visualization, uncertainty modelling, data warehousing and OLAP, optimization, and high performance computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信