Stochastic Quantization of Two-Dimensional $$P(\Phi )$$ Quantum Field Theory

IF 1.4 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
Paweł Duch, Wojciech Dybalski, Azam Jahandideh
{"title":"Stochastic Quantization of Two-Dimensional $$P(\\Phi )$$ Quantum Field Theory","authors":"Paweł Duch, Wojciech Dybalski, Azam Jahandideh","doi":"10.1007/s00023-024-01447-w","DOIUrl":null,"url":null,"abstract":"<p>We give a simple and self-contained construction of the <span>\\(P(\\Phi )\\)</span> Euclidean quantum field theory in the plane and verify the Osterwalder–Schrader axioms: translational and rotational invariance, reflection positivity and regularity. In the intermediate steps of the construction, we study measures on spheres. In order to control the infinite volume limit, we use the parabolic stochastic quantization equation and the energy method. To prove the translational and rotational invariance of the limit measure, we take advantage of the fact that the symmetry groups of the plane and the sphere have the same dimension.</p>","PeriodicalId":463,"journal":{"name":"Annales Henri Poincaré","volume":"37 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Poincaré","FirstCategoryId":"4","ListUrlMain":"https://doi.org/10.1007/s00023-024-01447-w","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We give a simple and self-contained construction of the \(P(\Phi )\) Euclidean quantum field theory in the plane and verify the Osterwalder–Schrader axioms: translational and rotational invariance, reflection positivity and regularity. In the intermediate steps of the construction, we study measures on spheres. In order to control the infinite volume limit, we use the parabolic stochastic quantization equation and the energy method. To prove the translational and rotational invariance of the limit measure, we take advantage of the fact that the symmetry groups of the plane and the sphere have the same dimension.

Abstract Image

二维 $$P(\Phi )$$ 量子场论的随机量子化
我们给出了一个简单而自足的平面欧几里得量子场论的构造,并验证了奥斯特瓦尔德-施拉德公理:平移和旋转不变性、反射正向性和规则性。的欧氏量子场论的简单自足构造,并验证了奥斯特瓦尔德-施拉德公理:平移和旋转不变性、反射实在性和正则性。在构造的中间步骤,我们研究了球面上的度量。为了控制无限体积极限,我们使用了抛物线随机量化方程和能量法。为了证明极限量度的平移和旋转不变性,我们利用了平面和球面的对称群具有相同维度这一事实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annales Henri Poincaré
Annales Henri Poincaré 物理-物理:粒子与场物理
CiteScore
3.00
自引率
6.70%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The two journals Annales de l''Institut Henri Poincaré, physique théorique and Helvetica Physical Acta merged into a single new journal under the name Annales Henri Poincaré - A Journal of Theoretical and Mathematical Physics edited jointly by the Institut Henri Poincaré and by the Swiss Physical Society. The goal of the journal is to serve the international scientific community in theoretical and mathematical physics by collecting and publishing original research papers meeting the highest professional standards in the field. The emphasis will be on analytical theoretical and mathematical physics in a broad sense.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信