Nonparametric Option Pricing with Generalized Entropic Estimators*

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Caio Almeida, Gustavo Freire, Rafael Azevedo, Kym Ardison
{"title":"Nonparametric Option Pricing with Generalized Entropic Estimators*","authors":"Caio Almeida, Gustavo Freire, Rafael Azevedo, Kym Ardison","doi":"10.1080/07350015.2022.2115499","DOIUrl":null,"url":null,"abstract":"<p><b>Abstract</b></p><p>We propose a family of nonparametric estimators for an option price that require only the use of underlying return data, but can also easily incorporate information from observed option prices. Each estimator comes from a risk-neutral measure minimizing generalized entropy according to a different Cressie-Read discrepancy. We apply our method to price S&amp;P 500 options and the cross-section of individual equity options, using distinct amounts of option data in the estimation. Estimators incorporating mild nonlinearities produce optimal pricing accuracy within the Cressie-Read family and outperform several benchmarks such as Black-Scholes and different GARCH option pricing models. Overall, we provide a powerful option pricing technique suitable for scenarios of limited option data availability.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/07350015.2022.2115499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a family of nonparametric estimators for an option price that require only the use of underlying return data, but can also easily incorporate information from observed option prices. Each estimator comes from a risk-neutral measure minimizing generalized entropy according to a different Cressie-Read discrepancy. We apply our method to price S&P 500 options and the cross-section of individual equity options, using distinct amounts of option data in the estimation. Estimators incorporating mild nonlinearities produce optimal pricing accuracy within the Cressie-Read family and outperform several benchmarks such as Black-Scholes and different GARCH option pricing models. Overall, we provide a powerful option pricing technique suitable for scenarios of limited option data availability.

使用广义熵估计器进行非参数期权定价*
摘要 我们提出了一系列期权价格的非参数估计器,这些估算器只需要使用标的收益数据,但也可以很容易地纳入观察到的期权价格信息。每个估计器都来自于一个风险中性度量,根据不同的 Cressie-Read 差异最小化广义熵。我们将我们的方法应用于 S&P 500 期权的定价和个股期权的横截面,并在估算中使用了不同数量的期权数据。包含轻度非线性的估计器在 Cressie-Read 系列中产生了最佳定价精度,并优于 Black-Scholes 和不同 GARCH 期权定价模型等几个基准模型。总之,我们提供了一种强大的期权定价技术,适用于期权数据有限的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信