{"title":"Pointless Parts of Completely Regular Frames","authors":"Richard N. Ball","doi":"10.1007/s10485-024-09768-x","DOIUrl":null,"url":null,"abstract":"<div><p>(Completely regular) locales generalize (Tychonoff) spaces; indeed, the passage from a locale to its spatial sublocale is a well understood coreflection. But a locale also possesses an equally important pointless sublocale, and with morphisms suitably restricted, the passage from a locale to its pointless sublocale is also a coreflection. Our main theorem is that every locale can be uniquely represented as a subdirect product of its pointless and spatial parts, again with suitably restricted projections. We then exploit this representation by showing that any locale is determined by (what may be described as) the placement of its points in its pointless part.</p></div>","PeriodicalId":7952,"journal":{"name":"Applied Categorical Structures","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Categorical Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10485-024-09768-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
(Completely regular) locales generalize (Tychonoff) spaces; indeed, the passage from a locale to its spatial sublocale is a well understood coreflection. But a locale also possesses an equally important pointless sublocale, and with morphisms suitably restricted, the passage from a locale to its pointless sublocale is also a coreflection. Our main theorem is that every locale can be uniquely represented as a subdirect product of its pointless and spatial parts, again with suitably restricted projections. We then exploit this representation by showing that any locale is determined by (what may be described as) the placement of its points in its pointless part.
期刊介绍:
Applied Categorical Structures focuses on applications of results, techniques and ideas from category theory to mathematics, physics and computer science. These include the study of topological and algebraic categories, representation theory, algebraic geometry, homological and homotopical algebra, derived and triangulated categories, categorification of (geometric) invariants, categorical investigations in mathematical physics, higher category theory and applications, categorical investigations in functional analysis, in continuous order theory and in theoretical computer science. In addition, the journal also follows the development of emerging fields in which the application of categorical methods proves to be relevant.
Applied Categorical Structures publishes both carefully refereed research papers and survey papers. It promotes communication and increases the dissemination of new results and ideas among mathematicians and computer scientists who use categorical methods in their research.