Douglas R. Cavener, Monica L. Bond, Lan Wu-Cavener, George G. Lohay, Mia W. Cavener, Xiaoyi Hou, David L. Pearce, Derek E. Lee
{"title":"Sexual dimorphisms in body proportions of Masai giraffes and the evolution of the giraffe’s neck","authors":"Douglas R. Cavener, Monica L. Bond, Lan Wu-Cavener, George G. Lohay, Mia W. Cavener, Xiaoyi Hou, David L. Pearce, Derek E. Lee","doi":"10.1007/s42991-024-00424-4","DOIUrl":null,"url":null,"abstract":"<p>Giraffes exhibit a large sexual dimorphism in body size. Whether sexual dimorphisms also exist in body proportions of the axial and appendicular skeleton has been debated, particularly regarding the giraffe’s iconic long neck. We examined the anatomical proportions of the neck, forelegs, hindlegs, and body trunk of the Masai giraffe (<i>G. tippelskirchi</i>) in captive and wild populations. We found that female Masai giraffes have proportionally longer necks relative to their forelegs than males in contradiction to the original necks-for-sex hypothesis that proposed that the evolution of the giraffe’s long neck was driven by male-male competition. However, male neck width and apparent mass are proportionally larger than females’, supporting a modification of the necks-for-sex hypothesis. Moreover, male foreleg length is proportionally longer whereas female trunk length is proportionally longer. These sexual dimorphisms were found in both captive and wild Masai giraffes. We speculate that the initial evolution of the giraffe’s long neck and legs was driven by interspecific competition and the maternal nutritional demands of gestation and lactation through natural selection to gain a competitive advantage in browsing, and then later the neck mass was further increased as a consequence of male-male competition and sexual selection. Differences in the proportions of major body components define sex phenotypes, but several giraffes display opposite-sex phenotypes with a significantly higher level of discordancy seen in captive males. We speculate that body proportion sexual dimorphisms are maintained in the wild by natural and/or sexual selection, but in captivity selection is relaxed resulting in a higher occurrence of discordances in sexual phenotypes.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s42991-024-00424-4","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Giraffes exhibit a large sexual dimorphism in body size. Whether sexual dimorphisms also exist in body proportions of the axial and appendicular skeleton has been debated, particularly regarding the giraffe’s iconic long neck. We examined the anatomical proportions of the neck, forelegs, hindlegs, and body trunk of the Masai giraffe (G. tippelskirchi) in captive and wild populations. We found that female Masai giraffes have proportionally longer necks relative to their forelegs than males in contradiction to the original necks-for-sex hypothesis that proposed that the evolution of the giraffe’s long neck was driven by male-male competition. However, male neck width and apparent mass are proportionally larger than females’, supporting a modification of the necks-for-sex hypothesis. Moreover, male foreleg length is proportionally longer whereas female trunk length is proportionally longer. These sexual dimorphisms were found in both captive and wild Masai giraffes. We speculate that the initial evolution of the giraffe’s long neck and legs was driven by interspecific competition and the maternal nutritional demands of gestation and lactation through natural selection to gain a competitive advantage in browsing, and then later the neck mass was further increased as a consequence of male-male competition and sexual selection. Differences in the proportions of major body components define sex phenotypes, but several giraffes display opposite-sex phenotypes with a significantly higher level of discordancy seen in captive males. We speculate that body proportion sexual dimorphisms are maintained in the wild by natural and/or sexual selection, but in captivity selection is relaxed resulting in a higher occurrence of discordances in sexual phenotypes.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.