Hemant K. Mishra, Ludovico Lami, Prabha Mandayam, Mark M. Wilde
{"title":"Pretty good measurement for bosonic Gaussian ensembles","authors":"Hemant K. Mishra, Ludovico Lami, Prabha Mandayam, Mark M. Wilde","doi":"10.1142/s0219749924400100","DOIUrl":null,"url":null,"abstract":"<p>The pretty good measurement is a fundamental analytical tool in quantum information theory, giving a method for inferring the classical label that identifies a quantum state chosen probabilistically from an ensemble. Identifying and constructing the pretty good measurement for the class of bosonic Gaussian states is of immediate practical relevance in quantum information processing tasks. Holevo recently showed that the pretty good measurement for a bosonic Gaussian ensemble is a bosonic Gaussian measurement that attains the accessible information of the ensemble [<i>IEEE Trans. Inf. Theory</i><b>66</b>(9) (2020) 5634]. In this paper, we provide an alternate proof of Gaussianity of the pretty good measurement for a Gaussian ensemble of multimode bosonic states, with a focus on establishing an explicit and efficiently computable Gaussian description of the measurement. We also compute an explicit form of the mean square error of the pretty good measurement, which is relevant when using it for parameter estimation.</p><p>Generalizing the pretty good measurement is a quantum instrument, called the pretty good instrument. We prove that the post-measurement state of the pretty good instrument is a faithful Gaussian state if the input state is a faithful Gaussian state whose covariance matrix satisfies a certain condition. Combined with our previous finding for the pretty good measurement and provided that the same condition holds, it follows that the expected output state is a faithful Gaussian state as well. In this case, we compute an explicit Gaussian description of the post-measurement and expected output states. Our findings imply that the pretty good instrument for bosonic Gaussian ensembles is no longer merely an analytical tool, but that it can also be implemented experimentally in quantum optics laboratories.</p>","PeriodicalId":51058,"journal":{"name":"International Journal of Quantum Information","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0219749924400100","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The pretty good measurement is a fundamental analytical tool in quantum information theory, giving a method for inferring the classical label that identifies a quantum state chosen probabilistically from an ensemble. Identifying and constructing the pretty good measurement for the class of bosonic Gaussian states is of immediate practical relevance in quantum information processing tasks. Holevo recently showed that the pretty good measurement for a bosonic Gaussian ensemble is a bosonic Gaussian measurement that attains the accessible information of the ensemble [IEEE Trans. Inf. Theory66(9) (2020) 5634]. In this paper, we provide an alternate proof of Gaussianity of the pretty good measurement for a Gaussian ensemble of multimode bosonic states, with a focus on establishing an explicit and efficiently computable Gaussian description of the measurement. We also compute an explicit form of the mean square error of the pretty good measurement, which is relevant when using it for parameter estimation.
Generalizing the pretty good measurement is a quantum instrument, called the pretty good instrument. We prove that the post-measurement state of the pretty good instrument is a faithful Gaussian state if the input state is a faithful Gaussian state whose covariance matrix satisfies a certain condition. Combined with our previous finding for the pretty good measurement and provided that the same condition holds, it follows that the expected output state is a faithful Gaussian state as well. In this case, we compute an explicit Gaussian description of the post-measurement and expected output states. Our findings imply that the pretty good instrument for bosonic Gaussian ensembles is no longer merely an analytical tool, but that it can also be implemented experimentally in quantum optics laboratories.
期刊介绍:
The International Journal of Quantum Information (IJQI) provides a forum for the interdisciplinary field of Quantum Information Science. In particular, we welcome contributions in these areas of experimental and theoretical research:
Quantum Cryptography
Quantum Computation
Quantum Communication
Fundamentals of Quantum Mechanics
Authors are welcome to submit quality research and review papers as well as short correspondences in both theoretical and experimental areas. Submitted articles will be refereed prior to acceptance for publication in the Journal.