CSIML: a cost-sensitive and iterative machine-learning method for small and imbalanced materials data sets

IF 1.4 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY
Shengzhou Li, Ayako Nakata
{"title":"CSIML: a cost-sensitive and iterative machine-learning method for small and imbalanced materials data sets","authors":"Shengzhou Li, Ayako Nakata","doi":"10.1093/chemle/upae090","DOIUrl":null,"url":null,"abstract":"Materials science research benefits from the powerful machine-learning (ML) surrogate models, but it is also limited by the implicit requirement for sufficiently big and balanced data distribution for ML. In this paper, we propose a model to obtain more credible results for small and imbalanced materials data sets as well as chemical knowledge. Taking 2 bandgaps imbalanced data sets as instances, we demonstrate the usability and performance of our model compared with common ML models with normal sampling and resampling methods.","PeriodicalId":9862,"journal":{"name":"Chemistry Letters","volume":"67 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry Letters","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1093/chemle/upae090","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Materials science research benefits from the powerful machine-learning (ML) surrogate models, but it is also limited by the implicit requirement for sufficiently big and balanced data distribution for ML. In this paper, we propose a model to obtain more credible results for small and imbalanced materials data sets as well as chemical knowledge. Taking 2 bandgaps imbalanced data sets as instances, we demonstrate the usability and performance of our model compared with common ML models with normal sampling and resampling methods.
CSIML:针对小型不平衡材料数据集的成本敏感迭代机器学习方法
材料科学研究得益于强大的机器学习(ML)代用模型,但也受限于 ML 对足够大且均衡的数据分布的隐性要求。在本文中,我们提出了一种模型,以获得更可信的结果,适用于小而不平衡的材料数据集以及化学知识。以 2 个带隙不平衡数据集为例,我们展示了我们的模型与采用正常采样和重采样方法的普通 ML 模型相比的可用性和性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemistry Letters
Chemistry Letters 化学-化学综合
CiteScore
3.00
自引率
6.20%
发文量
260
审稿时长
1.2 months
期刊介绍: Chemistry Letters covers the following topics: -Organic Chemistry- Physical Chemistry- Inorganic Chemistry- Analytical Chemistry- Materials Chemistry- Polymer Chemistry- Supramolecular Chemistry- Organometallic Chemistry- Coordination Chemistry- Biomolecular Chemistry- Natural Products and Medicinal Chemistry- Electrochemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信