Asymptotic properties of kernel density and hazard rate function estimators with censored widely orthant dependent data

IF 1 4区 数学 Q3 STATISTICS & PROBABILITY
Yi Wu, Wei Wang, Wei Yu, Xuejun Wang
{"title":"Asymptotic properties of kernel density and hazard rate function estimators with censored widely orthant dependent data","authors":"Yi Wu, Wei Wang, Wei Yu, Xuejun Wang","doi":"10.1007/s00180-024-01509-x","DOIUrl":null,"url":null,"abstract":"<p>Kernel estimators of density function and hazard rate function are very important in nonparametric statistics. The paper aims to investigate the uniformly strong representations and the rates of uniformly strong consistency for kernel smoothing density and hazard rate function estimation with censored widely orthant dependent data based on the Kaplan–Meier estimator. Under some mild conditions, the rates of the remainder term and strong consistency are shown to be <span>\\(O\\big (\\sqrt{\\log (ng(n))/\\big (nb_{n}^{2}\\big )}\\big )~a.s.\\)</span> and <span>\\(O\\big (\\sqrt{\\log (ng(n))/\\big (nb_{n}^{2}\\big )}\\big )+O\\big (b_{n}^{2}\\big )~a.s.\\)</span>, respectively, where <i>g</i>(<i>n</i>) are the dominating coefficients of widely orthant dependent random variables. Some numerical simulations and a real data analysis are also presented to confirm the theoretical results based on finite sample performances.</p>","PeriodicalId":55223,"journal":{"name":"Computational Statistics","volume":"128 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00180-024-01509-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Kernel estimators of density function and hazard rate function are very important in nonparametric statistics. The paper aims to investigate the uniformly strong representations and the rates of uniformly strong consistency for kernel smoothing density and hazard rate function estimation with censored widely orthant dependent data based on the Kaplan–Meier estimator. Under some mild conditions, the rates of the remainder term and strong consistency are shown to be \(O\big (\sqrt{\log (ng(n))/\big (nb_{n}^{2}\big )}\big )~a.s.\) and \(O\big (\sqrt{\log (ng(n))/\big (nb_{n}^{2}\big )}\big )+O\big (b_{n}^{2}\big )~a.s.\), respectively, where g(n) are the dominating coefficients of widely orthant dependent random variables. Some numerical simulations and a real data analysis are also presented to confirm the theoretical results based on finite sample performances.

Abstract Image

核密度和危险率函数估计器的渐近特性与普查广泛正交依存数据
密度函数和危险率函数的核估计器在非参数统计中非常重要。本文旨在研究基于 Kaplan-Meier 估计器的核平滑密度和危险率函数估计的均匀强表示和均匀强一致性率。在一些温和的条件下,余项率和强一致性被证明为 \(O\big (\sqrt{log (ng(n))/\big (nb_{n}^{2}\big )}\big )~a.s.\)和(O\big (\sqrt\log (ng(n))/\big (nb_{n}^{2}\big )}\big )+O\big (b_{n}^{2}\big )~a.s.\) ,其中 g(n) 是广义正交因变量的支配系数。本文还给出了一些数值模拟和实际数据分析,以证实基于有限样本性能的理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational Statistics
Computational Statistics 数学-统计学与概率论
CiteScore
2.90
自引率
0.00%
发文量
122
审稿时长
>12 weeks
期刊介绍: Computational Statistics (CompStat) is an international journal which promotes the publication of applications and methodological research in the field of Computational Statistics. The focus of papers in CompStat is on the contribution to and influence of computing on statistics and vice versa. The journal provides a forum for computer scientists, mathematicians, and statisticians in a variety of fields of statistics such as biometrics, econometrics, data analysis, graphics, simulation, algorithms, knowledge based systems, and Bayesian computing. CompStat publishes hardware, software plus package reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信