DNSRF: Deep Network-based Semi-NMF Representation Framework

IF 7.2 4区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Dexian Wang, Tianrui Li, Ping Deng, Zhipeng Luo, Pengfei Zhang, Keyu Liu, Wei Huang
{"title":"DNSRF: Deep Network-based Semi-NMF Representation Framework","authors":"Dexian Wang, Tianrui Li, Ping Deng, Zhipeng Luo, Pengfei Zhang, Keyu Liu, Wei Huang","doi":"10.1145/3670408","DOIUrl":null,"url":null,"abstract":"<p>Representation learning is an important topic in machine learning, pattern recognition, and data mining research. Among many representation learning approaches, semi-nonnegative matrix factorization (SNMF) is a frequently-used one. However, a typical problem of SNMF is that usually there is no learning rate guidance during the optimization process, which often leads to a poor representation ability. To overcome this limitation, we propose a very general representation learning framework (DNSRF) that is based on deep neural net. Essentially, the parameters of the deep net used to construct the DNSRF algorithms are obtained by matrix element update. In combination with different activation functions, DNSRF can be implemented in various ways. In our experiments, we tested nine instances of our DNSRF framework on six benchmark datasets. In comparison with other state-of-the-art methods, the results demonstrate superior performance of our framework, which is thus shown to have a great representation ability.</p>","PeriodicalId":48967,"journal":{"name":"ACM Transactions on Intelligent Systems and Technology","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Intelligent Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3670408","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Representation learning is an important topic in machine learning, pattern recognition, and data mining research. Among many representation learning approaches, semi-nonnegative matrix factorization (SNMF) is a frequently-used one. However, a typical problem of SNMF is that usually there is no learning rate guidance during the optimization process, which often leads to a poor representation ability. To overcome this limitation, we propose a very general representation learning framework (DNSRF) that is based on deep neural net. Essentially, the parameters of the deep net used to construct the DNSRF algorithms are obtained by matrix element update. In combination with different activation functions, DNSRF can be implemented in various ways. In our experiments, we tested nine instances of our DNSRF framework on six benchmark datasets. In comparison with other state-of-the-art methods, the results demonstrate superior performance of our framework, which is thus shown to have a great representation ability.

DNSRF:基于深度网络的半 NMF 表示框架
表示学习是机器学习、模式识别和数据挖掘研究中的一个重要课题。在众多表示学习方法中,半负矩阵因式分解(SNMF)是一种常用的方法。然而,SNMF 的一个典型问题是在优化过程中通常没有学习率的指导,这往往会导致表示能力较差。为了克服这一局限,我们提出了一种基于深度神经网络的通用表示学习框架(DNSRF)。从本质上讲,用于构建 DNSRF 算法的深度网参数是通过矩阵元素更新获得的。结合不同的激活函数,DNSRF 可以以多种方式实现。在实验中,我们在六个基准数据集上测试了 DNSRF 框架的九个实例。与其他最先进的方法相比,结果表明我们的框架性能优越,因此具有很强的表示能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACM Transactions on Intelligent Systems and Technology
ACM Transactions on Intelligent Systems and Technology COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
9.30
自引率
2.00%
发文量
131
期刊介绍: ACM Transactions on Intelligent Systems and Technology is a scholarly journal that publishes the highest quality papers on intelligent systems, applicable algorithms and technology with a multi-disciplinary perspective. An intelligent system is one that uses artificial intelligence (AI) techniques to offer important services (e.g., as a component of a larger system) to allow integrated systems to perceive, reason, learn, and act intelligently in the real world. ACM TIST is published quarterly (six issues a year). Each issue has 8-11 regular papers, with around 20 published journal pages or 10,000 words per paper. Additional references, proofs, graphs or detailed experiment results can be submitted as a separate appendix, while excessively lengthy papers will be rejected automatically. Authors can include online-only appendices for additional content of their published papers and are encouraged to share their code and/or data with other readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信