Hole mobility enhancement in monolayer WSe2 p-type transistors through molecular doping

IF 7.3 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Shiyuan Liu, Xiong Xiong, Xin Wang, Xinhang Shi, Ru Huang, Yanqing Wu
{"title":"Hole mobility enhancement in monolayer WSe2 p-type transistors through molecular doping","authors":"Shiyuan Liu, Xiong Xiong, Xin Wang, Xinhang Shi, Ru Huang, Yanqing Wu","doi":"10.1007/s11432-024-4032-6","DOIUrl":null,"url":null,"abstract":"<p>Two-dimensional (2D) transition metal dichalcogenide (TMDC) semiconductor materials exhibit extraordinary electrical properties, holding promise for the realization of next-generation complementary metal-oxide-semiconductor (CMOS) devices at ultimate scaling. However, constrained by effective device doping strategies, the hole mobility and device performance of tungsten diselenide (WSe<sub>2</sub>) p-type transistors, especially monolayer chemical vapor deposition (CVD)-grown WSe<sub>2</sub>, have not met expectations. In this paper, an effective performance enhancement of monolayer WSe<sub>2</sub> p-type transistor was achieved through a molecular doping strategy. Synthesizing monolayer WSe<sub>2</sub> directly on SiO<sub>2</sub> back-gated substrates and leveraging energy band alignment design, 4-nitrobenzenediazonium tetrafluoroborate (4-NBD) molecular dopant with a concentration of 10 mM was utilized to modulate the Fermi level position of monolayer WSe<sub>2</sub> for hole doping. The devices demonstrated a more than 98% increase in hole mobility, reaching up to 97 cm<sup>2</sup> · V<sup>−1</sup> · s<sup>−1</sup> while maintaining the current on/off ratio of 10<sup>8</sup>. Monolayer p-type WSe<sub>2</sub> transistors with 1 µm channel length exhibit a high drive current surpassing 176 µA · µm<sup>−1</sup>, exceeding previous CVD-WSe<sub>2</sub> devices with similar channel length. This straightforward and effective approach to improving the electrical performance of WSe<sub>2</sub> transistors paves the way for advanced logic technologies based on transition metal dichalcogenide semiconductors.</p>","PeriodicalId":21618,"journal":{"name":"Science China Information Sciences","volume":null,"pages":null},"PeriodicalIF":7.3000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11432-024-4032-6","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Two-dimensional (2D) transition metal dichalcogenide (TMDC) semiconductor materials exhibit extraordinary electrical properties, holding promise for the realization of next-generation complementary metal-oxide-semiconductor (CMOS) devices at ultimate scaling. However, constrained by effective device doping strategies, the hole mobility and device performance of tungsten diselenide (WSe2) p-type transistors, especially monolayer chemical vapor deposition (CVD)-grown WSe2, have not met expectations. In this paper, an effective performance enhancement of monolayer WSe2 p-type transistor was achieved through a molecular doping strategy. Synthesizing monolayer WSe2 directly on SiO2 back-gated substrates and leveraging energy band alignment design, 4-nitrobenzenediazonium tetrafluoroborate (4-NBD) molecular dopant with a concentration of 10 mM was utilized to modulate the Fermi level position of monolayer WSe2 for hole doping. The devices demonstrated a more than 98% increase in hole mobility, reaching up to 97 cm2 · V−1 · s−1 while maintaining the current on/off ratio of 108. Monolayer p-type WSe2 transistors with 1 µm channel length exhibit a high drive current surpassing 176 µA · µm−1, exceeding previous CVD-WSe2 devices with similar channel length. This straightforward and effective approach to improving the electrical performance of WSe2 transistors paves the way for advanced logic technologies based on transition metal dichalcogenide semiconductors.

通过分子掺杂提高单层 WSe2 p 型晶体管的空穴迁移率
二维(2D)过渡金属二卤化物(TMDC)半导体材料表现出非凡的电学特性,有望实现下一代互补金属氧化物半导体(CMOS)器件的终极扩展。然而,受制于有效的器件掺杂策略,二硒化钨(WSe2)对型晶体管,尤其是单层化学气相沉积(CVD)生长的 WSe2,其空穴迁移率和器件性能并未达到预期。本文通过分子掺杂策略有效提高了单层 WSe2 p 型晶体管的性能。在二氧化硅背栅极衬底上直接合成单层 WSe2,并利用能带排列设计,使用浓度为 10 mM 的 4-硝基苯偶氮四氟硼酸盐(4-NBD)分子掺杂剂来调节单层 WSe2 的费米级位置,从而实现空穴掺杂。这些器件的空穴迁移率提高了 98% 以上,达到 97 cm2 - V-1 - s-1,同时保持了 108 的电流开/关比。具有 1 µm 沟道长度的单层 p 型 WSe2 晶体管显示出超过 176 µA - µm-1 的高驱动电流,超过了以前具有类似沟道长度的 CVD-WSe2 器件。这种提高 WSe2 晶体管电气性能的直接而有效的方法为基于过渡金属二卤化物半导体的先进逻辑技术铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science China Information Sciences
Science China Information Sciences COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
12.60
自引率
5.70%
发文量
224
审稿时长
8.3 months
期刊介绍: Science China Information Sciences is a dedicated journal that showcases high-quality, original research across various domains of information sciences. It encompasses Computer Science & Technologies, Control Science & Engineering, Information & Communication Engineering, Microelectronics & Solid-State Electronics, and Quantum Information, providing a platform for the dissemination of significant contributions in these fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信