{"title":"ARITHMETIC PROPERTIES OF AN ANALOGUE OF t-CORE PARTITIONS","authors":"PRANJAL TALUKDAR","doi":"10.1017/s000497272400042x","DOIUrl":null,"url":null,"abstract":"<p>An integer partition of a positive integer <span>n</span> is called <span>t</span>-core if none of its hook lengths is divisible by <span>t</span>. Gireesh <span>et al.</span> [‘A new analogue of <span>t</span>-core partitions’, <span>Acta Arith.</span> <span>199</span> (2021), 33–53] introduced an analogue <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111127147-0430:S000497272400042X:S000497272400042X_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\overline {a}_t(n)$</span></span></img></span></span> of the <span>t</span>-core partition function. They obtained multiplicative formulae and arithmetic identities for <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111127147-0430:S000497272400042X:S000497272400042X_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\overline {a}_t(n)$</span></span></img></span></span> where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111127147-0430:S000497272400042X:S000497272400042X_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$t \\in \\{3,4,5,8\\}$</span></span></img></span></span> and studied the arithmetic density of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111127147-0430:S000497272400042X:S000497272400042X_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$\\overline {a}_t(n)$</span></span></img></span></span> modulo <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111127147-0430:S000497272400042X:S000497272400042X_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$p_i^{\\,j}$</span></span></img></span></span> where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111127147-0430:S000497272400042X:S000497272400042X_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$t=p_1^{a_1}\\cdots p_m^{a_m}$</span></span></img></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111127147-0430:S000497272400042X:S000497272400042X_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$p_i\\geq 5$</span></span></img></span></span> are primes. Bandyopadhyay and Baruah [‘Arithmetic identities for some analogs of the 5-core partition function’, <span>J. Integer Seq.</span> <span>27</span> (2024), Article no. 24.4.5] proved new arithmetic identities satisfied by <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111127147-0430:S000497272400042X:S000497272400042X_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$\\overline {a}_5(n)$</span></span></img></span></span>. We study the arithmetic densities of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111127147-0430:S000497272400042X:S000497272400042X_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$\\overline {a}_t(n)$</span></span></img></span></span> modulo arbitrary powers of 2 and 3 for <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111127147-0430:S000497272400042X:S000497272400042X_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$t=3^\\alpha m$</span></span></img></span></span> where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111127147-0430:S000497272400042X:S000497272400042X_inline11.png\"/><span data-mathjax-type=\"texmath\"><span>$\\gcd (m,6)$</span></span></span></span>=1. Also, employing a result of Ono and Taguchi [‘2-adic properties of certain modular forms and their applications to arithmetic functions’, <span>Int. J. Number Theory</span> <span>1</span> (2005), 75–101] on the nilpotency of Hecke operators, we prove an infinite family of congruences for <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111127147-0430:S000497272400042X:S000497272400042X_inline12.png\"/><span data-mathjax-type=\"texmath\"><span>$\\overline {a}_3(n)$</span></span></span></span> modulo arbitrary powers of 2.</p>","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"16 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s000497272400042x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
An integer partition of a positive integer n is called t-core if none of its hook lengths is divisible by t. Gireesh et al. [‘A new analogue of t-core partitions’, Acta Arith.199 (2021), 33–53] introduced an analogue $\overline {a}_t(n)$ of the t-core partition function. They obtained multiplicative formulae and arithmetic identities for $\overline {a}_t(n)$ where $t \in \{3,4,5,8\}$ and studied the arithmetic density of $\overline {a}_t(n)$ modulo $p_i^{\,j}$ where $t=p_1^{a_1}\cdots p_m^{a_m}$ and $p_i\geq 5$ are primes. Bandyopadhyay and Baruah [‘Arithmetic identities for some analogs of the 5-core partition function’, J. Integer Seq.27 (2024), Article no. 24.4.5] proved new arithmetic identities satisfied by $\overline {a}_5(n)$. We study the arithmetic densities of $\overline {a}_t(n)$ modulo arbitrary powers of 2 and 3 for $t=3^\alpha m$ where $\gcd (m,6)$=1. Also, employing a result of Ono and Taguchi [‘2-adic properties of certain modular forms and their applications to arithmetic functions’, Int. J. Number Theory1 (2005), 75–101] on the nilpotency of Hecke operators, we prove an infinite family of congruences for $\overline {a}_3(n)$ modulo arbitrary powers of 2.
期刊介绍:
Bulletin of the Australian Mathematical Society aims at quick publication of original research in all branches of mathematics. Papers are accepted only after peer review but editorial decisions on acceptance or otherwise are taken quickly, normally within a month of receipt of the paper. The Bulletin concentrates on presenting new and interesting results in a clear and attractive way.
Published Bi-monthly
Published for the Australian Mathematical Society