Spectral Projections and Paley–Wiener Theorem for the Unit Ball in $$\mathbb {C}^{n}$$

IF 0.7 4区 数学 Q2 MATHEMATICS
Noureddine Imesmad
{"title":"Spectral Projections and Paley–Wiener Theorem for the Unit Ball in $$\\mathbb {C}^{n}$$","authors":"Noureddine Imesmad","doi":"10.1007/s11785-024-01555-9","DOIUrl":null,"url":null,"abstract":"<p>For <span>\\(\\nu \\in \\mathbb {R}\\)</span>, we consider the invariant Laplacians <span>\\(\\Delta _{\\nu }\\)</span> in the unit complex ball <span>\\({\\mathcal {B}}^{n}=(SU(n,1)/S(U(n)\\times U(1))\\)</span></p><span>$$\\begin{aligned} \\Delta _{\\nu }= &amp; {} 4(1-|z|^{2})\\Bigg \\{\\sum _{i,j=1}^{n}(\\delta _{ij}-z_{i}\\bar{z_{j}})\\dfrac{\\partial ^{2}}{\\partial z_{i}\\partial \\bar{z_{j}}}-\\frac{\\nu }{2}\\sum _{j=1}^{n}z_{j}\\dfrac{\\partial }{\\partial z_{j}}+\\frac{\\nu }{2}\\sum _{j=1}^{n}\\bar{z_{j}}\\dfrac{\\partial }{\\partial \\bar{z_{j}}}+\\frac{\\nu ^2}{4}\\Bigg \\} \\end{aligned}$$</span><p>and the spectral projectors <span>\\({\\mathcal {Q}}_{\\lambda ,\\nu }\\)</span> associated to <span>\\(\\Delta _{\\nu }\\)</span> defined by </p><span>$$\\begin{aligned} {\\mathcal {Q}}_{\\lambda ,\\nu }f= &amp; {} |{\\textbf{c}}_{\\nu }(\\lambda )|^{-2}f*\\varphi _{\\lambda ,\\nu }(z), \\end{aligned}$$</span><p>where <span>\\(\\varphi _{\\lambda ,\\nu }\\)</span> is the <span>\\(S(U(n)\\times U(1))\\)</span>-invariant eigenfunction of <span>\\(\\Delta _{\\nu }\\)</span> and <span>\\({\\textbf{c}}_{\\nu }(\\lambda )\\)</span> the Harish-Chandra function. The goal of this paper is to give an image characterization of <span>\\({\\mathcal {Q}}_{\\lambda ,\\nu }\\)</span> of <span>\\({\\mathcal {C}}_{c}^{\\infty }({\\mathcal {B}}^{n})\\)</span> and <span>\\(L^{2}({\\mathcal {B}}^{n},(1-|z|^2)^{-n-1}dm(z))\\)</span>.</p>","PeriodicalId":50654,"journal":{"name":"Complex Analysis and Operator Theory","volume":"43 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Analysis and Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11785-024-01555-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For \(\nu \in \mathbb {R}\), we consider the invariant Laplacians \(\Delta _{\nu }\) in the unit complex ball \({\mathcal {B}}^{n}=(SU(n,1)/S(U(n)\times U(1))\)

$$\begin{aligned} \Delta _{\nu }= & {} 4(1-|z|^{2})\Bigg \{\sum _{i,j=1}^{n}(\delta _{ij}-z_{i}\bar{z_{j}})\dfrac{\partial ^{2}}{\partial z_{i}\partial \bar{z_{j}}}-\frac{\nu }{2}\sum _{j=1}^{n}z_{j}\dfrac{\partial }{\partial z_{j}}+\frac{\nu }{2}\sum _{j=1}^{n}\bar{z_{j}}\dfrac{\partial }{\partial \bar{z_{j}}}+\frac{\nu ^2}{4}\Bigg \} \end{aligned}$$

and the spectral projectors \({\mathcal {Q}}_{\lambda ,\nu }\) associated to \(\Delta _{\nu }\) defined by

$$\begin{aligned} {\mathcal {Q}}_{\lambda ,\nu }f= & {} |{\textbf{c}}_{\nu }(\lambda )|^{-2}f*\varphi _{\lambda ,\nu }(z), \end{aligned}$$

where \(\varphi _{\lambda ,\nu }\) is the \(S(U(n)\times U(1))\)-invariant eigenfunction of \(\Delta _{\nu }\) and \({\textbf{c}}_{\nu }(\lambda )\) the Harish-Chandra function. The goal of this paper is to give an image characterization of \({\mathcal {Q}}_{\lambda ,\nu }\) of \({\mathcal {C}}_{c}^{\infty }({\mathcal {B}}^{n})\) and \(L^{2}({\mathcal {B}}^{n},(1-|z|^2)^{-n-1}dm(z))\).

$$\mathbb {C}^{n}$ 中单位球的谱投影和帕利-维纳定理
對於(in \mathbb {R}),我們考慮單位複球中({\mathcal {B}}^{n}=(SU(n,1)/S(U(n)\times U(1)))的不變拉普拉斯(\(\Delta _{\nu }\ )。\Δ_{\nu }= & {}4(1-|z|^{2})\Bigg \{sum _{i、j=1}^{n}(\delta _{ij}-z_{i}\bar{z_{j}})\dfrac{partial ^{2}}{partial z_{i}\partial \bar{z_{j}}}-\和 _{j=1}^{n}z_{j} (dfrac{partial}{partial z_{j}}+\frac{nu }{2} (sum _{j=1}^{n}\bar{z_{j}} (dfrac{partial}{partial \bar{z_{j}}+\frac{nu ^2}{4}\Bigg \}\end{aligned}$$and the spectral projectors \({\mathcal {Q}}_{\lambda ,\nu }\) associated to \(\Delta _{\nu }\) defined by $$\begin{aligned} {\mathcal {Q}}_{\lambda ,\nu }f= & {}|{textbf{c}}_{\nu }(\lambda )|^{-2}f*\varphi _{\lambda ,\nu }(z), \end{aligned}$$ 其中 \(\varphi _{\lambda 、\)是\(\Delta _\{nu }\) 的(S(U(n)\times U(1))-不变特征函数,而\({\textbf{c}}_{\nu }(\lambda )\) 是哈里什-钱德拉函数。本文的目标是给出 \({\mathcal {Q}}_{\lambda ,\nu }\) 的 \({\mathcal {C}}_{c}^{\infty }({\mathcal {B}}^{n})\) 和 \(L^{2}({\mathcal {B}}^{n},(1-|z|^2)^{-n-1}dm(z))\) 的图像特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
12.50%
发文量
107
审稿时长
3 months
期刊介绍: Complex Analysis and Operator Theory (CAOT) is devoted to the publication of current research developments in the closely related fields of complex analysis and operator theory as well as in applications to system theory, harmonic analysis, probability, statistics, learning theory, mathematical physics and other related fields. Articles using the theory of reproducing kernel spaces are in particular welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信