{"title":"NOTES ON FERMAT-TYPE DIFFERENCE EQUATIONS","authors":"ILPO LAINE, ZINELAABIDINE LATREUCH","doi":"10.1017/s0004972724000406","DOIUrl":null,"url":null,"abstract":"<p>We consider the existence problem of meromorphic solutions of the Fermat-type difference equation <span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111227055-0589:S0004972724000406:S0004972724000406_eqnu1.png\"><span data-mathjax-type=\"texmath\"><span>$$ \\begin{align*} f(z)^p+f(z+c)^q=h(z), \\end{align*} $$</span></span></img></span></p><p>where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111227055-0589:S0004972724000406:S0004972724000406_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$p,q$</span></span></img></span></span> are positive integers, and <span>h</span> has few zeros and poles in the sense that <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111227055-0589:S0004972724000406:S0004972724000406_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$N(r,h) + N(r,1/h) = S(r,h)$</span></span></img></span></span>. As a particular case, we consider <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111227055-0589:S0004972724000406:S0004972724000406_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$h=e^g$</span></span></img></span></span>, where <span>g</span> is an entire function. Additionally, we briefly discuss the case where <span>h</span> is small with respect to <span>f</span> in the standard sense <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111227055-0589:S0004972724000406:S0004972724000406_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$T(r,h)=S(r,f)$</span></span></img></span></span>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0004972724000406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We consider the existence problem of meromorphic solutions of the Fermat-type difference equation $$ \begin{align*} f(z)^p+f(z+c)^q=h(z), \end{align*} $$
where $p,q$ are positive integers, and h has few zeros and poles in the sense that $N(r,h) + N(r,1/h) = S(r,h)$. As a particular case, we consider $h=e^g$, where g is an entire function. Additionally, we briefly discuss the case where h is small with respect to f in the standard sense $T(r,h)=S(r,f)$.
我们考虑费马型差分方程 $$ \begin{align*}f(z)^p+f(z+c)^q=h(z), \end{align*}的同态解的存在性问题。其中,$p,q$ 为正整数,而 h 的零点和极点很少,即 $N(r,h) + N(r,1/h) = S(r,h)$。作为一种特殊情况,我们考虑 $h=e^g$,其中 g 是一次函数。此外,我们还简要讨论了 h 相对于 f 较小的情况,即标准意义上的 $T(r,h)=S(r,f)$。