NOTES ON FERMAT-TYPE DIFFERENCE EQUATIONS

Pub Date : 2024-06-03 DOI:10.1017/s0004972724000406
ILPO LAINE, ZINELAABIDINE LATREUCH
{"title":"NOTES ON FERMAT-TYPE DIFFERENCE EQUATIONS","authors":"ILPO LAINE, ZINELAABIDINE LATREUCH","doi":"10.1017/s0004972724000406","DOIUrl":null,"url":null,"abstract":"<p>We consider the existence problem of meromorphic solutions of the Fermat-type difference equation <span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111227055-0589:S0004972724000406:S0004972724000406_eqnu1.png\"><span data-mathjax-type=\"texmath\"><span>$$ \\begin{align*} f(z)^p+f(z+c)^q=h(z), \\end{align*} $$</span></span></img></span></p><p>where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111227055-0589:S0004972724000406:S0004972724000406_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$p,q$</span></span></img></span></span> are positive integers, and <span>h</span> has few zeros and poles in the sense that <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111227055-0589:S0004972724000406:S0004972724000406_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$N(r,h) + N(r,1/h) = S(r,h)$</span></span></img></span></span>. As a particular case, we consider <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111227055-0589:S0004972724000406:S0004972724000406_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$h=e^g$</span></span></img></span></span>, where <span>g</span> is an entire function. Additionally, we briefly discuss the case where <span>h</span> is small with respect to <span>f</span> in the standard sense <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111227055-0589:S0004972724000406:S0004972724000406_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$T(r,h)=S(r,f)$</span></span></img></span></span>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0004972724000406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the existence problem of meromorphic solutions of the Fermat-type difference equation Abstract Image$$ \begin{align*} f(z)^p+f(z+c)^q=h(z), \end{align*} $$

where Abstract Image$p,q$ are positive integers, and h has few zeros and poles in the sense that Abstract Image$N(r,h) + N(r,1/h) = S(r,h)$. As a particular case, we consider Abstract Image$h=e^g$, where g is an entire function. Additionally, we briefly discuss the case where h is small with respect to f in the standard sense Abstract Image$T(r,h)=S(r,f)$.

分享
查看原文
费马型差分方程注释
我们考虑费马型差分方程 $$ \begin{align*}f(z)^p+f(z+c)^q=h(z), \end{align*}的同态解的存在性问题。其中,$p,q$ 为正整数,而 h 的零点和极点很少,即 $N(r,h) + N(r,1/h) = S(r,h)$。作为一种特殊情况,我们考虑 $h=e^g$,其中 g 是一次函数。此外,我们还简要讨论了 h 相对于 f 较小的情况,即标准意义上的 $T(r,h)=S(r,f)$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信